Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Soft rods and tubular elements are the main building blocks of continuum robots. Kinetostatic models along with a geometrically exact description of the kinematics on SE(3) are now an established foundation for simulation and control. A key aspect is the reconstruction of the actual shape of a soft slender element. This involves numerically solving nonlinear differential equations on SE(3), which is problematic, in particular for real-time applications. To circumvent this, shape functions are used to approximate the deformation. A widely used approach is based on the constant curvature assumption. This has limited accuracy, however. In this article, an interpolation is presented that leads to a fourth-order accurate approximation of the deformation of a Cosserat beam. This serves as a strain-parameterized shape function. Either the strain at the two ends of the beam or the strain and its derivative at one end are specified. The presented interpolation is relevant also for shape control when handling flexible slender objects with robotic manipulators.

References

1.
Rucker
,
D. C.
,
Jones
,
B. A.
, and
Webster III
,
R. J.
,
2010
, “
A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots
,”
IEEE Trans. Rob.
,
26
(
5
), pp.
769
780
.
2.
Wang
,
H.
,
Totaro
,
M.
, and
Beccai
,
L.
,
2018
, “
Toward Perceptive Soft Robots: Progress and Challenges
,”
Adv. Sci.
,
5
(
9
), p.
1800541
.
3.
Xu
,
K.
, and
Simaan
,
N.
,
2010
, “
Analytic Formulation for Kinematics, Statics, and Shape Restoration of Multibackbone Continuum Robots via Elliptic Integrals
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011006
.
4.
Xiao
,
Q.
,
Musa
,
M.
,
Godage
,
I. S.
,
Su
,
H.
, and
Chen
,
Y.
,
2023
, “
Kinematics and Stiffness Modeling of Soft Robot With a Concentric Backbone
,”
ASME J. Mech. Rob.
,
15
(
5
), p.
051011
.
5.
Orekhov
,
A. L.
,
Johnston
,
G. L. H.
, and
Simaan
,
N.
,
2023
, “
Task and Configuration Space Compliance of Continuum Robots via Lie Group and Modal Shape Formulations
,”
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Detroit, MI
, pp.
590
597
.
6.
Black
,
C.
,
Till
,
D.
, and
Rucker
,
J.and
,
2018
, “
Parallel Continuum Robots
,”
IEEE Trans. Rob.
,
34
(
1
), pp.
29
47
.
7.
Chen
,
G.
,
Kang
,
Y.
,
Liang
,
Z. Z.
,
Zhenkun
,
Z.
, and
Wang
,
H.
,
2021
, “
Kinetostatics Modeling and Analysis of Parallel Continuum Manipulators
,”
Mech. Mach. Theory.
,
163
, p.
104380
.
8.
Briot
,
S.
, and
Boyer
,
F.
,
2022
, “
A Geometrically Exact Assumed Strain Modes Approach for the Geometrico- and Kinemato-Static Modelings of Continuum Parallel Robots
,”
IEEE Trans. Rob.
,
39
(
2
), pp.
1527
1543
.
9.
Graule
,
M. A.
,
Teeple
,
C. B.
, and
Wood
,
R. J.
,
2022
, “
Contact-Implicit Trajectory and Grasp Planning for Soft Continuum Manipulators
,”
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Kyoto, Japan
,
IEEE
, pp.
9401
9408
.
10.
Wiese
,
M.
,
Berthold
,
R.
,
Wangenheim
,
M.
, and
Raatz
,
A.
,
2023
, “
Describing and Analyzing Mechanical Contact for Continuum Robots Using a Shooting-Based Cosserat Rod Implementation
,”
IEEE Rob. Autom. Lett.
,
9
(
2
), pp.
1668
1675
.
11.
Rucker
,
D. C.
, and
Webster III
,
R. J.
,
2011
, “
Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading
,”
IEEE Trans. Rob.
,
27
(
6
), pp.
1033
1044
.
12.
Hussain
,
I.
,
Malvezzi
,
M.
,
Gan
,
D.
,
Iqbal
,
Z.
,
Seneviratne
,
L.
,
Prattichizzo
,
D.
, and
Renda
,
F.
,
2021
, “
Compliant Gripper Design, Prototyping, and Modeling Using Screw Theory Formulation
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
55
71
.
13.
Almaghout
,
K.
,
Cherubini
,
A.
, and
Klimchik
,
A.
,
2024
, “
Robotic Co-manipulation of Deformable Linear Objects for Large Deformation Tasks
,”
Rob. Auton. Syst.
,
175
(
4
), p.
104652
.
14.
Almaghout
,
K.
, and
Klimchik
,
A.
,
2024
, “
Manipulation Planning for Cable Shape Control
,”
Robtics
,
13
(
18
), p.
20
.
15.
Sadati
,
S. H.
,
Mitros
,
Z.
,
Henry
,
R.
,
Zeng
,
L.
,
Da Cruz
,
L.
, and
Bergeles
,
C.
,
2022
, “
Real-Time Dynamics of Concentric Tube Robots With Reduced-order Kinematics Based on Shape Interpolation
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
5671
5678
.
16.
Webster III
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Re.
,
29
(
13
), pp.
1661
1683
.
17.
Selig
,
J.
,
2005
,
Geometric Fundamentals of Robotics
,
Springer
,
New York
.
18.
Lynch
,
K. M.
, and
Park
,
F. C.
,
2017
,
Modern Robotics
,
Cambridge University Press
.
19.
Müller
,
A.
,
2018
, “
Screw and Lie Group Theory in Multibody Dynamics –Motion Representation and Recursive Kinematics of Tree-Topology Systems
,”
Multibody Syst. Dyn.
,
43
(
1
), pp.
1
34
.
20.
Sonneville
,
V.
,
Cardona
,
A.
, and
Brüls
,
O.
,
2014
, “
Geometrically Exact Beam Finite Element Formulated on the Special Euclidean Group SE(3)
,”
Comput. Methods. Appl. Mech. Eng.
,
268
, pp.
451
474
.
21.
Bottasso
,
C. L.
,
Borri
,
M.
, and
Trainelli
,
L.
,
2001
, “
Integration of Elastic Multibody Systems by Invariant Conserving/dissipating Algorithms. I. Formulation
,”
Comput. Methods. Appl. Mech. Eng.
,
190
, pp.
3669
3699
.
22.
Borri
,
M.
, and
Bottasso
,
C.
,
1994
, “
An Intrinsic Beam Model Based on a Helicoidal Approximation–Part I: Formulation
,”
Int. J. Numerical Methods Eng.
,
37
(
13
), pp.
2267
2289
.
23.
Borri
,
M.
, and
Bottasso
,
C.
,
1994
, “
An Intrinsic Beam Model Based on a Helicoidal Approximation–Part II: Linearization and Finite Element Implementation
,”
Int. J. Numerical Methods Eng.
,
37
(
13
), pp.
2291
2309
.
24.
Murray
,
R.
,
Li
,
Z.
, and
Sastry
,
S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
25.
Magnus
,
W.
,
1954
, “
On the Exponential Solution of Differential Equations for a Linear Operator
,”
Commun. Pure Appl. Math.
,
7
(
4
), pp.
649
673
.
26.
Müller
,
A.
,
2021
, “
Review of the Exponential and Cayley Map on SE (3) as Relevant for Lie Group Integration of the Generalized Poisson Equation and Flexible Multibody Systems
,”
Proc. R. Soc. A
,
477
(
2253
), p.
20210303
.
27.
Müller
,
A.
,
2010
, “
Approximation of Finite Rigid Body Motions From Velocity Fields
,”
ZAMM-J. Appl. Math. Mech./Z. für Angew. Math. Mech.: Appl. Math. Mech.
,
90
(
6
), pp.
514
521
. http://dx.dpoi.org/10.1002/zamm.200900383
28.
Müller
,
A.
,
2024
, “
Higher-Order Interpolation of Cosserat Beam Deformations
,” In Seventh International Conference on Multibody System Dynamics (IMSD), June 9–13, 2024, Madison, WI.
29.
Bauchau
,
O. A.
,
2010
,
Flexible Multibody Dynamics
,
Springer Science & Business Media
,
Springer Dordrecht
.
30.
Han
,
S.
, and
Bauchau
,
O. A.
,
2024
, “
Interpolation of Rotation and Motion
,”
Multibody Syst. Dyn.
,
31
(
3
), pp.
339
370
.
31.
Greco
,
L.
,
Scrofani
,
A.
, and
Cuomo
,
M.
,
2021
, “
A Non-Linear Symmetric G1-Conforming Bézier Finite Element Formulation for the Analysis of Kirchhoff Beam Assemblies
,”
Comput. Methods. Appl. Mech. Eng.
,
387
, p.
114176
.
You do not currently have access to this content.