Abstract

Nonprehensile manipulation is a concept of performing a manipulation task without the need for grasping and is a common mechanism found in nature, such as the dung beetle, to manipulate large and heavy objects across an environment. This concept, when applied to a robot, allows objects that are normally too large or heavy to be grasped, to be manipulated by exploiting a robot’s inherent locomotion unit through motion planning. This article presents a nonprehensile manipulation planning method for QuadRunner, a robot that utilizes a modified 5-bar mechanism to achieve hybrid locomotion and latching. When QuadRunner’s leg is in its latching configuration, it can securely connect to an object and complete a desired manipulation task. When the object’s height exceeds its leg workspace, QuadRunner is capable of leaping into the air and transiting into the latching mode to attach to an object to complete a manipulation task. Here, we introduce a motion planning model for QuadRunner to push and its 5-bar leg to realize the various necessary modes. Next, the system constraints are described, and how it was used to generate feasible robot motion paths to perform a desired nonprehensile manipulation. Finally, the leaping mode of QuadRunner is explained in detail. Experimental results show that QuadRunner can reliably leap to attach to an object of 43 cm in height, under the constraint that its most extended leg length is 22 cm.

References

1.
Miki
,
T.
,
Lee
,
J.
,
Hwangbo
,
J.
,
Wellhausen
,
L.
,
Koltun
,
V.
, and
Hutter
,
M.
,
2022
, “
Learning Robust Perceptive Locomotion for Quadrupedal Robots in the Wild
,”
Sci. Rob.
,
7
(
62
), p.
eabk2822
.
2.
Bledt
,
G.
,
Powell
,
M. J.
,
Katz
,
B.
,
Di Carlo
,
J.
,
Wensing
,
P. M.
, and
Kim
,
S.
,
2018
, “
MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
2245
2252
.
3.
He
,
J.
, and
Gao
,
F.
,
2020
, “
Mechanism, Actuation, Perception, and Control of Highly Dynamic Multilegged Robots: A Review
,”
Chin. J. Mech. Eng.
,
33
(
33
), pp.
1
30
.
4.
Tranzatto
,
M.
,
Mascarich
,
F.
,
Bernreiter
,
L.
,
Godinho
,
C.
,
Camurri
,
M.
,
Khattak
,
S.
,
Dang
,
T.
,
Reijgwart
,
V.
,
Loeje
,
J.
,
Wisth
,
D.
, and
Zimmermann
,
S.
,
2022
, “Cerberus: Autonomous Legged and Aerial Robotic Exploration in the Tunnel and Urban Circuits of the Darpa Subterranean Challenge,” arXiv:2201.07067.
5.
Bouman
,
A.
,
Ginting
,
M. F.
,
Alatur
,
N.
,
Palieri
,
M.
,
Fan
,
D. D.
,
Touma
,
T.
,
Pailevanian
,
T.
,
Kim
,
S.-K.
,
Otsu
,
K.
,
Burdick
,
J.
, and
Agha-Mohammadi
,
A. A.
,
2020
, “
Autonomous Spot: Long-Range Autonomous Exploration of Extreme Environments With Legged Locomotion
,”
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 25–29
, pp.
2518
2525
.
6.
Klemm
,
V.
,
Morra
,
A.
,
Salzmann
,
C.
,
Tschopp
,
F.
,
Bodie
,
K.
,
Gulich
,
L.
,
Küng
,
N.
,
Mannhart
,
D.
,
Pfister
,
C.
,
Vierneisel
,
M.
, and
Weber
,
F.
,
2019
, “
Ascento: A Two-Wheeled Jumping Robot
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
, pp.
7515
7521
.
7.
Bellicoso
,
C. D.
,
Krämer
,
K.
,
Stäuble
,
M.
,
Sako
,
D.
,
Jenelten
,
F.
,
Bjelonic
,
M.
, and
Hutter
,
M.
,
2019
, “
ALMA-Articulated Locomotion and Manipulation for a Torque-Controllable Robot
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
, pp.
8477
8483
.
8.
Mittal
,
M.
,
Hoeller
,
D.
,
Farshidian
,
F.
,
Hutter
,
M.
, and
Garg
,
A.
,
2022
, “
Articulated Object Interaction in Unknown Scenes With Whole-Body Mobile Manipulation
,”
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Kyoto, Japan
,
Oct. 23–27
, pp.
1647
1654
.
9.
Zimmermann
,
S.
,
Poranne
,
R.
, and
Coros
,
S.
,
2021
, “
Go Fetch!-Dynamic Grasps Using Boston Dynamics Spot With External Robotic Arm
,”
2021 IEEE International Conference on Robotics and Automation (ICRA)
,
Xian, China
,
May 30–June 5
, pp.
4488
4494
.
10.
Lynch
,
K. M.
, and
Mason
,
M. T.
,
1999
, “
Dynamic Nonprehensile Manipulation: Controllability, Planning, and Experiments
,”
Int. J. Rob. Res.
,
18
(
1
), pp.
64
92
.
11.
Ruggiero
,
F.
,
Lippiello
,
V.
, and
Siciliano
,
B.
,
2018
, “
Nonprehensile Dynamic Manipulation: A Survey
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
1711
1718
.
12.
Lynch
,
K. M.
, and
Murphey
,
T. D.
,
2003
, “Control of Nonprehensile Manipulation,”
Control Problems in Robotics
,
Springer
,
Berlin, Heidelberg
, pp.
39
57
.
13.
Arm
,
P.
,
Mittal
,
M.
,
Kolvenbach
,
H.
, and
Hutter
,
M.
,
2024
, “Pedipulate: Enabling Manipulation Skills Using a Quadruped Robot’s Leg,” arXiv:2402.10837.
14.
Jeon
,
S.
,
Jung
,
M.
,
Choi
,
S.
,
Kim
,
B.
, and
Hwangbo
,
J.
,
2023
, “
Learning Whole-Body Manipulation for Quadrupedal Robot
,”
IEEE Rob. Autom. Lett.
,
9
(
1
), pp.
699
706
.
15.
Topping
,
T. T.
,
Kenneally
,
G.
, and
Koditschek
,
D. E.
,
2017
, “
Quasi-Static and Dynamic Mismatch for Door Opening and Stair Climbing With a Legged Robot
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
1080
1087
.
16.
Tsvetkov
,
Y.
, and
Ramamoorthy
,
S.
,
2022
, “
A Novel Design and Evaluation of a Dactylus-Equipped Quadruped Robot for Mobile Manipulation
,”
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Kyoto, Japan
,
Oct. 23–27
, pp.
1633
1638
.
17.
Mataric
,
M. J.
,
Nilsson
,
M.
, and
Simsarin
,
K. T.
,
1995
, “
Cooperative Multi-Robot Box-Pushing
,”
Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
,
Pittsburgh, PA
,
Aug. 5–9
, Vol.
3
, pp.
556
561
.
18.
Yeldan
,
A.
,
Arora
,
A.
, and
Soh
,
G. S.
,
2022
, “
Quadrunner: A Transformable Quasi-Wheel Quadruped
,”
2022 International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
May 23–27
, pp.
4694
4700
.
19.
Yeldan
,
A.
,
Arora
,
A.
, and
Soh
,
G. S.
,
2024
, “
“On the Edge” Obstacle Surmounting Method Using Hybrid Locomotion
,”
ASME J. Mech. Rob.
,
16
(
1
), p.
011002
.
You do not currently have access to this content.