Graphical Abstract Figure

Metabolic consumption of human-machine model after optimization study

Graphical Abstract Figure

Metabolic consumption of human-machine model after optimization study

Close modal

Abstract

Inspired by the kinesiology of human bionic joints, a transfemoral prosthetic mechanism based on a functional structure of parallel mechanism is developed for the transfemoral amputees. The walking interactive simulation is implemented based on human-prosthesis modeling to verify the kinematics of the designed prosthetic mechanism, as well as to explore compatibility between the amputees and prosthesis. Then, simulation-based prosthetic optimization is performed to pursue an optimized human-prosthesis model with economic metabolic consumption while eliminating compatibility errors including the joints' misalignment error between the affected limb and healthy limb, and the assembly error between human and prosthesis, so that the potential physical health problems can be avoided efficiently. This method is valuable for the optimal design of interactive rehabilitation robots. Finally, a developed proportional-integral-derivative-based (PID-based) finite-state machine (FSM) strategy is used, and the kinematic validation is carried out. The results show that the designed prosthesis possesses ankle varus–valgus characteristic, and it has a high human-like motion accuracy due to the FSM control can track prosthetic motion in each gait event. What's more, the prosthetic optimization can be an efficient method to enhance the biomechanical performance of human-prosthetic model so that the amputees have a more natural and symmetry gait.

References

1.
Goldfarb
,
M.
,
Lawson
,
B. E.
, and
Shultz
,
A. H.
,
2013
, “
Realizing the Promise of Robotic Leg Prostheses
,”
Sci. Transl. Med.
,
5
(
210
), pp.
210
215
.
2.
Cherelle
,
P.
,
Grosu
,
V.
,
Matthys
,
A.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2013
, “
Design and Validation of the Ankle Mimicking Prosthetic (AMP-) Foot 2.0
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
22
(
1
), pp.
138
148
.
3.
Murthy Arelekatti
,
V. N.
, and
Winter
,
A. G.
,
2018
, “
Design and Preliminary Field Validation of a Fully Passive Prosthetic Knee Mechanism for Users With Transfemoral Amputation in India
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031007
.
4.
Song
,
M.
,
Chen
,
W.
,
Guo
,
S.
,
Li
,
Z.
,
Rasmussen
,
J.
, and
Bai
,
S.
,
2023
, “
Design, Simulation and Kinematic Verification of a Multi-loop Ankle-Foot Prosthetic Mechanism
,”
IEEE Robot. Autom. Lett.
,
8
(
9
), pp.
5767
5774
.
5.
Song
,
M.
,
Guo
,
S.
,
Wang
,
X.
, and
Qu
,
H.
,
2020
, “
Dynamic Analysis and Performance Verification of a Novel Hip Prosthetic Mechanism
,”
Chin. J. Mech. Eng.
,
33
(
1
), pp.
1
17
.
6.
Prost
,
V.
,
Olesnavage
,
K. M.
,
Brett Johnson
,
W.
,
Major
,
M. J.
, and
Winter
,
A. G.
,
2018
, “
Design and Testing of a Prosthetic Foot With Interchangeable Custom Springs for Evaluating Lower Leg Trajectory Error, an Optimization Metric for Prosthetic Feet
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
031007
.
7.
Valle
,
G.
,
Saliji
,
A.
,
Fogle
,
E.
,
Cimolato
,
A.
,
Petrini
,
F. M.
, and
Raspopovic
,
S.
,
2021
, “
Mechanisms of Neuro-Robotic Prosthesis Operation in Leg Amputees
,”
Sci. Adv.
,
7
(
17
), pp.
1
13
.
8.
Zou
,
J.
,
Zhang
,
X.
,
Zhang
,
Y.
,
Li
,
J.
, and
Jin
,
Z.
,
2022
, “
Prediction on the Medial Knee Contact Force in Patients With Knee Valgus Using Transfer Learning Approaches: Application to Rehabilitation Gaits
,”
Comput. Biol. Med.
,
150
, p.
106099
.
9.
Song
,
Q.
,
Ma
,
X.
, and
Liu
,
Y.
,
2023
, “
Continuous Online Prediction of Lower Limb Joints Angles Based on sEMG Signals by Deep Learning Approach
,”
Comput. Biol. Med.
,
163
, p.
107124
.
10.
Elery
,
T.
,
Rezazadeh
,
S.
,
Nesler
,
C.
, and
Gregg
,
R. D.
,
2018
, “
Design and Benchtop Validation of a Powered Knee-Ankle Prosthesis With High-Torque, Low-Impedance Actuators
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, QLD, Australia
,
May 21–25
, pp.
2788
2795
.
11.
Lawson
,
B. E.
,
Varol
,
H. A.
,
Huff
,
A.
,
Erdemir
,
E.
, and
Goldfarb
,
M.
,
2012
, “
Control of Stair Ascent and Descent With a Powered Transfemoral Prosthesis
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
21
(
3
), pp.
466
473
.
12.
Martinez-Villalpando
,
E. C.
,
Weber
,
J.
,
Elliott
,
G.
, and
Herr
,
H.
,
2008
, “
Design of an Agonist-Antagonist Active Knee Prosthesis
,”
Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Scottsdale, AZ
,
Oct. 19–22
, pp.
529
534
.
13.
Rouse
,
E. J.
,
Mooney
,
L. M.
, and
Herr
,
H. M.
,
2014
, “
Clutchable Series-Elastic Actuator: Implications for Prosthetic Knee Design
,”
Int. J. Robot. Res.
,
33
(
13
), pp.
1611
1625
.
14.
Zhu
,
J.
,
Wang
,
Q.
, and
Wang
,
L.
,
2014
, “
On the Design of a Powered Transtibial Prosthesis With Stiffness Adaptable Ankle and Toe Joints
,”
IEEE Trans. Ind. Electron.
,
61
(
9
), pp.
4797
4807
.
15.
Ficanha
,
E. M.
,
Ribeiro
,
G. A.
,
Dallali
,
H.
, and
Rastgaar
,
M.
,
2016
, “
Design and Preliminary Evaluation of a Two DoFs Cable-Driven Ankle-Foot Prosthesis With Active Dorsiflexion-Plantarflexion and Inversion-Eversion
,”
Front. Bioeng. Biotechnol.
,
4
, pp.
1
16
.
16.
Caputo
,
J. M.
, and
Collins
,
S. H.
,
2014
, “
Prosthetic Ankle Push-Off Work Reduces Metabolic Rate But Not Collision Work in Non-Amputee Walking
,”
Sci. Rep.
,
4
(
1
), pp.
1
9
.
17.
Bellman
,
R.
,
Holgate
,
M. A.
, and
Sugar
,
T.
,
2008
, “
SPARKY 3: Design of an Active Robotic Ankle Prosthesis With Two Actuated Degrees of Freedom Using Regenerative Kinetics
,”
Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Scottsdale, AZ
,
Oct. 19–22
, pp.
511
516
.
18.
Song
,
M.
,
Guo
,
S.
,
Oliveira
,
A. S.
,
Wang
,
X.
, and
Qu
,
H.
,
2021
, “
Design Method and Verification of a Hybrid Prosthetic Mechanism With Energy-Damper Clutchable Device for Transfemoral Amputees
,”
Front. Mech. Eng.
,
16
(
4
), pp.
747
764
.
19.
Winter
,
D. A.
,
1991
,
Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological
,
Waterloo Biomechanics
,
Waterloo, Canada
, pp.
19
125
.
20.
Winter
,
D. A.
,
2009
, “Kinetics: Forces and Moment of Force,”
Biomechanics and Motor Control of Human Movement
, 4th ed.,
John Wiley-Sons
,
New Jersey, NY
, pp.
107
138
.
21.
Wang
,
K.
,
Williams
,
H.
,
Qian
,
Z.
,
Wei
,
G.
,
Xiu
,
H.
,
Chen
,
W.
,
Lu
,
X.
, et al
,
2024
, “
Design and Evaluation of a Smooth- Locking-Based Customizable Prosthetic Knee Joint
,”
ASME J. Mech. Rob.
,
16
(
4
), p.
041008
.
22.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. T.
,
Surma
,
E.
, and
de Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the Anybody Modeling System
,”
Simul. Modell. Pract. Theory
,
14
(
8
), pp.
1100
1111
.
23.
Voigt
,
M.
,
Bojsen-Moller
,
F.
,
Simonsen
,
E. B.
, and
Dyhre-Poulsen
,
P.
,
1995
, “
The Influence of Tendon Young’s Modulus, Dimensions and Instantaneous Moment Arms on the Efficiency of Human Movement
,”
J. Biomech.
,
28
(
3
), pp.
281
291
.
24.
Haan
,
A. D.
,
Van-Ingen-Schenau
,
G. J.
,
Ettema
,
G. J.
,
Huijing
,
P. A.
, and
Lodder
,
M. A.
,
1989
, “
Efficiency of Rat Medial Gastrocnemius Muscle in Contractions With and Without an Active Prestretch
,”
J. Exp. Biol.
,
141
(
1
), pp.
327
341
.
25.
Margaria
,
R.
,
1968
, “
Positive and Negative Work Performances and Their Efficiencies in Human Locomotion
,”
Int. Z. Angew. Physiol.
,
25
(
4
), pp.
339
351
.
26.
Markus
,
A. T.
,
Sobczyk
,
M. R.
, and
Perondi
,
E. A.
,
2022
, “
Modeling, Control, and Simulation of a 3-Degrees of Freedom Mechanism Actuated by Pneumatic Artificial Muscles for Upper Limb Prosthesis Application
,”
ASME J. Mech. Rob.
,
15
(
1
), p.
011002
.
27.
Minetti
,
A. E.
, and
Alexander
,
R. M.
,
1997
, “
A Theory of Metabolic Costs for Bipedal Gaits
,”
J. Theor. Biol.
,
186
(
4
), pp.
467
476
.
28.
Alexander
,
R. M.
,
1989
, “
Optimization and Gaits in the Locomotion of Vertebrates
,”
Phy. Rev.
,
69
(
4
), pp.
1199
1227
.
You do not currently have access to this content.