Abstract

Push recovery of a biped robot is challenging because of the complexity of biped locomotion contributed by its constraints. The present work proposes a novel optimized control methodology for push recovery against external disturbances utilizing “Centroidal Momentum” and “Momentum Jacobian Matrix” (MJM). The novelty of this work lies in the optimization framework of the control problem that includes an eigenanalysis of MJM. The optimization considers various constraints associated with the biped locomotion while minimizing the necessary cost function. Successful push recoveries of a biped from different stance scenarios (single leg stance, double leg stance, double leg stance at different heights) are demonstrated using the unique methodology proposed in this work. Such a unique methodology using eigenanalysis of MJM for push recovery under diverse stance scenarios has yet to be described in the literature. The balance stability of the robot after being pushed is evaluated by its Center of Mass (CoM) motion and Zero Moment Point (ZMP) criteria. It is also demonstrated that the proposed methodology in the present work can recover a biped from a greater impulse force normalized by biped weight compared to other existing push recovery methods. A new term called “Effective Disturbance Ratio” (EDR) is introduced to perform this comparison.

References

1.
Vukobratovic
,
M.
, and
Juricic
,
D.
,
1969
, “
Contribution to the Synthesis of Biped Gait
,”
IEEE Trans. Biomed. Eng.
,
BME-16
(
1
), pp.
1
6
.
2.
Kagami
,
S.
,
Kanehiro
,
F.
,
Tamiya
,
Y.
,
Inaba
,
M.
, and
Inoue
,
H.
,
2001
, “Autobalancer: An Online Dynamic Balance Compensation Scheme for Humanoid Robots,”
Robotics: The Algorithmic Perspective, Workshop on Algorithmic Foundations on Robotics
, AK Peters/CRC Press, pp.
329
340
.
3.
Fevre
,
M.
,
Goodwine
,
B.
, and
Schmiedeler
,
J. P.
,
2019
, “
Velocity Decomposition-Enhanced Control for Point and Curved-Foot Planar Bipeds Experiencing Velocity Disturbances
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020901
.
4.
Kumar
,
J.
, and
Dutta
,
A.
,
2022
, “
Learning Based Motion Planning of a 14 Dof Biped Robot on 3d Uneven Terrain Containing a Ditch
,”
Int. J. Humanoid Rob.
,
18
(
6
), p.
2150018
.
5.
Bhounsule
,
P. A.
, and
Zamani
,
A.
,
2017
, “
A Discrete Control Lyapunov Function for Exponential Orbital Stabilization of the Simplest Walker
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051011
.
6.
Wang
,
M.
,
Ceccarelli
,
M.
, and
Carbone
,
G.
,
2020
, “
Design and Development of the Cassino Biped Locomotor
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031001
.
7.
Gora
,
S.
,
Gupta
,
S. S.
, and
Dutta
,
A.
,
2023
, “
Energy-Based Footstep Planning of Biped on Uneven Deformable Terrain Using Nonlinear Inverted Pendulum
,”
ASME J. Mech. Rob.
,
15
(
5
), p.
054502
.
8.
Várkonyi
,
P. L.
,
2015
, “
On the Stability of Rigid Multibody Systems With Applications to Robotic Grasping and Locomotion
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041012
.
9.
Dan
,
A.
,
Rama Krishna
,
K.
, and
Saha
,
S.
,
2024
, “
Static Stability of Planar Contacting Systems: Analytical Treatment in Euclidean Space
,”
ASME J. Mech. Rob.
,
16
(
8
), p.
081009
.
10.
Pratt
,
J.
,
Carff
,
J.
,
Drakunov
,
S.
, and
Goswami
,
A.
,
2006
, “
Capture Point: A Step Toward Humanoid Push Recovery
,”
6th IEEE-RAS International Conference on Humanoid Robots
,
Genova, Italy
,
Dec. 4–6
, IEEE, pp.
200
207
.
11.
Lee
,
Y. H.
,
Lee
,
H.
,
Kang
,
H.
,
Lee
,
J. H.
,
Park
,
J. M.
,
Kang
,
C.
,
Lee
,
Y. H.
,
Kim
,
Y. B.
, and
Choi
,
H. R.
,
2021
, “
Balance Recovery Based on Whole-Body Control Using Joint Torque Feedback for Quadrupedal Robots
,”
ASME J. Mech. Rob.
,
13
(
5
), p.
050910
.
12.
Kudoh
,
S.
,
Komura
,
T.
, and
Ikeuchi
,
K.
,
2002
, “
The Dynamic Postural Adjustment With the Quadratic Programming Method
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Lausanne, Switzerland
,
Sept. 30–Oct. 4
, IEEE, Vol. 3, pp.
2563
2568
.
13.
Begue
,
J.
,
Peyrot
,
N.
,
Lesport
,
A.
,
Turpin
,
N. A.
,
Watier
,
B.
,
Dalleau
,
G.
, and
Caderby
,
T.
,
2021
, “
Segmental Contribution to Whole-Body Angular Momentum During Stepping in Healthy Young and Old Adults
,”
Sci. Rep.
,
11
(
1
), pp.
1
13
.
14.
Sano
,
A.
, and
Furusho
,
J.
,
1990
, “
Realization of Natural Dynamic Walking Using the Angular Momentum Information
,”
IEEE International Conference on Robotics and Automation
,
Cincinnati, OH
,
May 13–18
, IEEE, pp.
1476
1481
.
15.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Fujiwara
,
K.
,
Harada
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2003
, “
Resolved Momentum Control: Humanoid Motion Planning Based on the Linear and Angular Momentum
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)
,
Las Vegas, NV
,
Oct. 27–31
, IEEE, Vol. 2, pp.
1644
1650
.
16.
Mitobe
,
K.
,
Capi
,
G.
, and
Nasu
,
Y.
,
2004
, “
A New Control Method for Walking Robots Based on Angular Momentum
,”
Mechatronics
,
14
(
2
), pp.
163
174
.
17.
De Lasa
,
M.
,
Mordatch
,
I.
, and
Hertzmann
,
A.
,
2010
, “
Feature-Based Locomotion Controllers
,”
ACM Trans. Graph.
,
29
(
4
), pp.
1
10
.
18.
Peng
,
W. Z.
,
Song
,
H.
, and
Kim
,
J. H.
,
2021
, “
Reduced-Order Model With Foot Tipping Allowance for Legged Balancing
,”
45th Mechanisms and Robotics Conference (MR)
,
Virtual Online
,
Aug. 17–19
.
19.
Komura
,
T.
,
Leung
,
H.
,
Kudoh
,
S.
, and
Kuffner
,
J.
,
2005
, “
A Feedback Controller for Biped Humanoids That Can Counteract Large Perturbations During Gait
,”
2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, IEEE, pp.
1989
1995
.
20.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2001
, “
The 3D Linear Inverted Pendulum Mode: A Simple Modeling for a Biped Walking Pattern Generation
,”
2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium
,
Maui, HI
,
Oct. 29–Nov. 3
, IEEE, pp.
239
246
.
21.
Schuller
,
R.
,
Mesesan
,
G.
,
Englsberger
,
J.
,
Lee
,
J.
, and
Ott
,
C.
,
2021
, “
Online Centroidal Angular Momentum Reference Generation and Motion Optimization for Humanoid Push Recovery
,”
IEEE Rob. Autom. Lett.
,
6
(
3
), pp.
5689
5696
.
22.
Goswami
,
A.
, and
Kallem
,
V.
,
2004
, “
Rate of Change of Angular Momentum and Balance Maintenance of Biped Robots
,”
IEEE International Conference on Robotics and Automation, 2004.
,
New Orleans, LA
,
Apr. 26–May 1
, Vol. 4, IEEE, pp.
3785
3790
.
23.
Lee
,
S.-H.
, and
Goswami
,
A.
,
2012
, “
A Momentum-Based Balance Controller for Humanoid Robots on Non-level and Non-stationary Ground
,”
Auton. Rob.
,
33
(
4
), pp.
399
414
.
24.
Xie
,
Z.
,
Li
,
L.
, and
Luo
,
X.
,
2022
, “
Human-Like Strategies Exploiting Momentum for Biped Robot Balance Recovery
,”
Iran. J. Sci. Technol. Trans. Mech. Eng.
,
46
(
3
), pp.
599
615
.
25.
Herzog
,
A.
,
Rotella
,
N.
,
Mason
,
S.
,
Grimminger
,
F.
,
Schaal
,
S.
, and
Righetti
,
L.
,
2016
, “
Momentum Control With Hierarchical Inverse Dynamics on a Torque-Controlled Humanoid
,”
Auton. Rob.
,
40
, pp.
473
491
.
26.
Peng
,
W. Z.
,
Song
,
H.
, and
Kim
,
J. H.
,
2021
, “
Stability Region-Based Analysis of Walking and Push Recovery Control
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031005
.
27.
Song
,
H.
,
Peng
,
W. Z.
, and
Kim
,
J. H.
,
2024
, “
Partition-Aware Stability Control for Humanoid Robot Push Recovery With Whole-Body Capturability
,”
ASME J. Mech. Rob.
,
16
(
1
), p.
011005
.
28.
AUTODESK
,
2023
, “Autodesk Fusion 360,” https://www.autodesk.in/products/fusion-360/overview, Accessed July 12, 2023.
29.
Mahardika
,
W.
,
2021
, “Rewa Humanoid Robot,” https://grabcad.com/library/rewa-humanoid-robot-1, Accessed July 12, 2023.
30.
Luo
,
Y.
,
2018
, “Fusion2pybullet,” https://github.com/yanshil/Fusion2PyBullet, Accessed July 12, 2023.
31.
erwincoumans
,
2023
, “Pybullet,” https://github.com/bulletphysics/bullet3, Accessed July 12, 2023.
32.
Orin
,
D. E.
, and
Goswami
,
A.
,
2008
, “
Centroidal Momentum Matrix of a Humanoid Robot: Structure and Properties
,”
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22–26
, IEEE, pp.
653
659
.
33.
Andersson
,
J. A. E.
,
Gillis
,
J.
,
Horn
,
G.
,
Rawlings
,
J. B.
, and
Diehl
,
M.
,
2019
, “
CasADi—A Software Framework for Nonlinear Optimization and Optimal Control
,”
Math. Program. Comput.
,
11
(
1
), pp.
1
36
.
34.
Kajita
,
S.
,
Hirukawa
,
H.
,
Harada
,
K.
, and
Yokoi
,
K.
,
2014
,
Introduction to Humanoid Robotics
,
Springer
,
Berlin, Heidelberg
.
35.
Sugihara
,
T.
,
Nakamura
,
Y.
, and
Inoue
,
H.
,
2002
, “
Real-Time Humanoid Motion Generation Through ZMP Manipulation Based on Inverted Pendulum Control
,”
2002 IEEE International Conference on Robotics and Automation
,
Washington, DC
,
May 11–15
, Vol. 2, IEEE,pp. 1404–1409.
36.
Mori
,
K.
,
Fukui
,
F.
, and
Uchimura
,
Y.
,
2014
, “
Stability Criterion of Biped Robot on Rough Terrain
,”
Electr. Eng. Jpn.
,
189
(
4
), pp.
43
51
.
37.
IIT
,
D.
,
2023
, “Central Research Facility,” IIT Delhi, https://crf.iitd.ac.in/Home.html, Accessed September 2, 2023.
38.
“Orange ot5330 m 7.4 v 35.5 kg.cm 180 metal gear digital servo motor,” 2023, https://robu.in/product-category/dc-motors/motors/servo-motors/orange-servo-motors/, Accessed September 2, 2023.
39.
Kurtus
,
R.
,
2002
, “Determining the Coefficient of Friction,” The School for Champions.
40.
ARDUINO
,
2023
, “Arduino Mega 2560 Rev3,” https://store.arduino.cc/products/arduino-mega-2560-rev3, Accessed September 2, 2023.
You do not currently have access to this content.