Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper presents an approach to passively realize any specified object spatial compliance using the grasp of a robotic hand. The kinematically anthropomorphic hands considered have multiple 4-joint fingers making hard point contact with the held object, and the joints of each finger have selectable passive elastic behavior. It is shown that the space of passively realizable compliances is restricted by the kinematic structure of the anthropomorphic hand. To achieve an arbitrary compliant behavior, fingers must be able to adjust their orientation. Synthesis procedures for grasps having 3, 4, and 5 or more fingers are developed. These procedures identify the finger configurations and the individual finger joint compliances needed to passively achieve any specified spatial object compliance matrix in the 20-dimensional subspace of grasp-realizable behaviors.

References

1.
Whitney
,
D. E.
,
1982
, “
Quasi-static Assembly of Compliantly Supported Rigid Parts
,”
ASME J. Dyn. Syst. Meas. Control
,
104
(
1
), pp.
65
77
.
2.
Mason
,
M.
,
1983
, “Compliant Motion,”
Robot Motion: Planning and Control
,
M.
Brady
, ed.,
MIT Press
,
Cambridge, MA
, pp.
305
322
.
3.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation: Part I—Theory
,”
ASME J. Dyn. Syst. Meas. Control
,
107
(
1
), pp.
1
7
.
4.
Schimmels
,
J. M.
, and
Peshkin
,
M. A.
,
1992
, “
Admittance Matrix Design for Force Guided Assembly
,”
IEEE Trans. Rob. Autom.
,
8
(
2
), pp.
213
227
.
5.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2017
, “
Geometric Construction-Based Realization of Planar Elastic Behaviors With Parallel and Serial Manipulators
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051006
.
6.
Chen
,
G.
,
Zhang
,
Z.
,
Kong
,
L.
, and
Wang
,
H.
,
2020
, “
Analysis and Validation of a Flexible Planar Two Degrees-of-Freedom Parallel Manipulator With Structural Passive Compliance
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011011
.
7.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2022
, “
Planar Compliance Realization With Two 3-Joint Serial Manipulators Connected in Parallel
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051007
.
8.
Roberts
,
R. G.
,
1999
, “
Minimal Realization of a Spatial Stiffness Matrix With Simple Springs Connected in Parallel
,”
IEEE Trans. Rob. Autom.
,
15
(
5
), pp.
953
958
.
9.
Choi
,
K.
,
Jiang
,
S.
, and
Li
,
Z.
,
2002
, “
Spatial Stiffness Realization With Parallel Springs Using Geometric Parameters
,”
IEEE Trans. Rob. Autom.
,
18
(
3
), pp.
264
284
.
10.
Hong
,
M. B.
, and
Choi
,
Y. J.
,
2009
, “
Screw System Approach to Physical Realization of Stiffness Matrix With Arbitrary Rank
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021007
.
11.
Yu
,
J.
,
Li
,
S.
,
Su
,
H.-J.
, and
Culpepper
,
M. L.
,
2011
, “
Screw Theory Based Methodology for the Deterministic Type Synthesis of Flexure Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031008
.
12.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2018
, “
Geometric Construction-Based Realization of Spatial Elastic Behaviors in Parallel and Serial Manipulators
,”
IEEE Trans. Robot.
,
34
(
3
), pp.
764
780
.
13.
Salisbury
,
J.
, and
Roth
,
B.
,
1983
, “
Kinematic and Force Analysis of Articulated Mechanical Hands
,”
ASME J. Mech. Trans. Autom. Des.
,
105
(
1
), pp.
35
41
.
14.
Mason
,
M. T.
, and
Salisbury
,
J. K.
,
1985
,
Robot Hand and the Mechanics of Manipulation
,
MIT Press
,
Cambridge, MA
.
15.
Cloutier
,
A.
, and
Yang
,
J.
,
2018
, “
Grasping Force Optimization Approaches for Anthropomorphic Hands
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011004
.
16.
Li
,
Z.
,
Hsu
,
P.
, and
Sastry
,
S.
,
1989
, “
Grasping and Coordinated Manipulation by a Multifingered Robot Hand
,”
Int. J. Robot. Res.
,
8
(
4
), pp.
491
497
.
17.
Kumar
,
R.
, and
Mukherjee
,
S.
,
2022
, “
Algorithmic Fingertip Repositioning for Enhanced In-Hand Manipulation of the Objects
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021005
.
18.
Bicchi
,
A.
,
2000
, “
Hands for Dexterous Manipulation and Robust Grasping: A Difficult Road Toward Simplicity
,”
IEEE Trans. Rob. Autom.
,
16
(
6
), pp.
652
662
.
19.
Wimbock
,
T.
,
Ott
,
C.
,
Albu-Schäffer
,
A.
, and
Hirzingern
,
G.
,
2011
, “
Comparison of Object-Level Grasp Controllers for Dynamic Dexterous Manipulation
,”
Int. J. Robot. Res.
,
31
(
1
), pp.
3
23
.
20.
Pfanne
,
M.
,
Chalon
,
M.
,
Stulp
,
F.
,
Ritter
,
H.
, and
Albu-Schaffer
,
A.
,
2020
, “
Object-Level Impedance Control for Dexterous In-Hand Manipulation
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
2987
2994
.
21.
Cutkosky
,
M. R.
, and
Kao
,
I.
,
1989
, “
Computing and Controlling the Compliance of a Robotic Hand
,”
IEEE Trans. Rob. Autom.
,
5
(
2
), pp.
617
622
.
22.
Choi
,
H. R.
,
Chung
,
W. K.
, and
Youm
,
Y.
,
1995
, “
Stiffness Analysis and Control of Multi-fingered Robot Hands
,”
ASME J. Dyn. Syst. Meas. Control
,
117
(
3
), pp.
435
439
.
23.
Brokowski
,
M. E.
, and
Peshkin
,
M.
,
1997
, “
Impedance Restrictions on Independent Finger Grippers
,”
IEEE Trans. Rob. Autom.
,
13
(
4
), pp.
151
165
.
24.
Kao
,
I.
, and
Ngo
,
C.
,
1999
, “
Properties of the Grasp Stiffness Matrix and Conservative Control Strategies
,”
Int. J. Robot. Res.
,
18
(
2
), pp.
159
167
.
25.
Kim
,
B.-H.
,
Yi
,
B.-J.
,
Oh
,
S.-R.
, and
Suh
,
I. H.
,
2003
, “
Independent Finger and Independent Joint-Based Compliance Control of Multifingered Robot Hands
,”
IEEE Trans. Rob. Autom.
,
19
(
2
), pp.
185
199
.
26.
Farnioli
,
E.
,
Gabiccini
,
M.
,
Bonilla
,
M.
, and
Bicchi
,
A.
,
2013
, “
Grasp Compliance Regulation in Synergistically Controlled Robotic Hands With VSA
,”
IEEE International Conference on Intelligent Robots and Systems (IROS)
,
Tokyo, Japan
,
Apr. 8
, pp.
3015
3022
.
27.
Shimoga
,
K.
, and
Goldenberg
,
A.
,
1992
, “
Constructing Multifingered Grasps to Achieve Admittance Center
,”
IEEE International Conference on Robotics and Automation
,
Nice, France
,
May 12–14
, pp.
2296
2301
.
28.
Garate
,
V. R.
,
Pozzi
,
M.
,
Prattichizzo
,
D.
,
Tsagarakis
,
N.
, and
Ajoudani
,
A.
,
2018
, “
Grasp Stiffness Control in Robotic Hands Through Coordinated Optimization of Pose and Joint Stiffness
,”
IEEE Robot. Autom. Lett.
,
3
(
4
), pp.
3952
3959
.
29.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2024
, “
Object Spatial Impedance Achieved by a Multi-finger Grasp With Hard Point Contact
,”
IEEE Trans. Robot.
,
40
, pp.
483
498
.
30.
Cutkosky
,
M. R.
,
1989
, “
On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks
,”
IEEE Trans. Rob. Autom.
,
5
(
3
), pp.
269
279
.
31.
Yao
,
W.
, and
Dai
,
J. S.
,
2008
, “
Dexterous Manipulation of Origami Cartons With Robotic Fingers Based on the Interactive Configuration Spaces
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022303
.
32.
Kuo
,
P.-H.
, and
Deshpande
,
A. D.
,
2016
, “
A Novel Joint Design for Robotic Hands With Humanlike Nonlinear Compliance
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021004
.
33.
Ma
,
R. R.
,
Rojas
,
N.
, and
Dollar
,
A. M.
,
2016
, “
Spherical Hands: Toward Underactuated, In-Hand Manipulation Invariant to Object Size and Grasp Location
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061021
.
34.
Mihalev
,
G.
, and
Yordanov
,
S.
,
2021
, “
Kinematic Model and Analysis of an Anthropomorphic Robotic Finger
,”
IEEE International Conference Automatics and Informatics (ICAI)
,
Varna, Bulgaria
,
Sept. 30–Oct. 2
, pp.
322
327
.
35.
Lee
,
C.-T.
, and
Chang
,
J.-Y.
,
2023
, “
Design of Hybrid Fully Actuated and Self-adaptive Mechanism for Anthropomorphic Robotic Finger
,”
ASME J. Mech. Rob.
,
15
(
4
), p.
041004
.
36.
Zang
,
X.
,
Wang
,
C.
,
Zhang
,
P.
,
Liu
,
G.
,
Zhang
,
X.
, and
Zhao
,
J.
,
2023
, “
A Novel Design of a Multi-fingered Bionic Hand With Variable Stiffness for Robotic Grasp
,”
ASME J. Mech. Rob.
,
15
(
4
), p.
045001
.
37.
Fu
,
J.
,
Yu
,
Z.
,
Guo
,
Q.
,
Zheng
,
L.
, and
Gan
,
D.
,
2023
, “
A Variable Stiffness Robotic Gripper Based on Parallel Beam With Vision-Based Force Sensing for Flexible Grasping
,”
Robotica
, pp.
1
19
.
38.
Grebenstein
,
M.
,
2014
,
Approaching Human Performance: The Functionality-Driven Awiwi Robot Hand
,
Springer
,
Cham, Switzerland
.
39.
Prattichizzo
,
D.
, and
Trinkle
,
J. C.
,
2008
, “Grasping,”
Handbook on Robotics
,
B.
Siciliano
and
O.
Kathib
, eds.,
Springer
,
Berlin
, pp.
671
700
.
40.
Leon
,
B.
,
Morales
,
A.
, and
Sancho-Bru
,
J.
,
2014
, “Robot Grasping Foundations,”
From Robot to Human Grasping Simulation
,
Springer
,
Cham
, pp.
15
31
.
41.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2002
, “
The Duality in Spatial Stiffness and Compliance as Realized in Parallel and Serial Elastic Mechanisms
,”
ASME J. Dyn. Syst. Meas. Control
,
124
(
1
), pp.
76
84
.
42.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2016
, “
Realization of Point Planar Elastic Behaviors Using Revolute Joint Serial Mechanisms Having Specified Link Lengths
,”
Mech. Mach. Theory
,
103
, pp.
1
20
.
43.
Ham
,
R. V.
,
Sugar
,
T. G.
,
Vanderborght
,
B.
,
Hollander
,
K. W.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuator Designs: Review of Actuators With Passive Adjustable Compliance/Controllable Stiffness for Robotic Applications
,”
IEEE Robot. Autom. Mag.
,
16
(
3
), pp.
81
94
.
44.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2022
, “
Requirements on the Spatial Distribution of Elastic Components Used in Compliance Realization
,”
IEEE Robot. Autom. Lett.
,
7
(
4
), pp.
12347
12354
.
You do not currently have access to this content.