Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

A kinetostatic model of an asymmetrical double-stepped beam under axial loading is developed. The beam is composed of two thick segments and three thin segments where a thick segment is between two thin segments, and the longitudinal axis of the thick segment is not colinear with that of the thin segment. The kinetostatic model based on the beam constraint model (BCM) is capable of predicting accurate bending and near-buckling behaviors of the beam. A virtual rigid link neighboring the noncolinear segments is introduced in the BCM to broaden the applicability of the BCM. An analytical formula to represent the critical load of a symmetrical double-stepped beam under axial loading is derived and the value calculated by the formula agrees with the limit load of the asymmetrical double-stepped beam within the elastic range. The investigated beam has potential applications in displacement amplifiers and robotic grippers.

References

1.
Qi
,
K.-Q.
,
Xiang
,
Y.
,
Fang
,
C.
,
Zhang
,
Y.
, and
Yu
,
C.-S.
,
2015
, “
Analysis of the Displacement Amplification Ratio of Bridge-Type Mechanism
,”
Mech. Mach. Theory
,
87
, pp.
45
56
.
2.
Kim
,
J.-J.
,
Choi
,
Y.-M.
,
Ahn
,
D.
,
Hwang
,
B.
,
Gweon
,
D.-G.
, and
Jeong
,
J.
,
2012
, “
A Millimeter-Range Flexure-Based Nano-Positioning Stage Using a Self-Guided Displacement Amplification Mechanism
,”
Mech. Mach. Theory
,
50
, pp.
109
120
.
3.
Liu
,
P.
, and
Yan
,
P.
,
2016
, “
A New Model Analysis Approach for Bridge-Type Amplifiers Supporting Nano-Stage Design
,”
Mech. Mach. Theory
,
99
, pp.
176
188
.
4.
Kim
,
J.
,
Dorin
,
P.
, and
Wang
,
K. W.
,
2020
, “
Vibration Energy Harvesting Enhancement Exploiting Magnetically Coupled Bistable and Linear Harvesters
,”
Smart Mater. Struct.
,
29
(
6
), p.
065006
.
5.
Lin
,
J.-T.
,
Shuvra
,
P. D.
,
Yang
,
J. A.
,
McNamara
,
S.
,
Walsh
,
K.
, and
Alphenaar
,
B.
,
2020
, “
Buckled Beam Mechanical Memory Using an Asymmetric Piezoresistor for Readout
,”
J. Micromech. Microeng.
,
30
(
7
), p.
075006
.
6.
Dong
,
L.
, and
Lakes
,
R.
,
2013
, “
Advanced Damper With High Stiffness and High Hysteresis Damping Based on Negative Structural Stiffness
,”
Int. J. Solids Struct.
,
50
(
14–15
), pp.
2416
2423
.
7.
Wu
,
Z.
,
Zhu
,
B.
,
Wang
,
R.
, and
Zhang
,
X.
,
2022
, “
Design of Mechanical Metamaterial for Energy Absorption Using a Beam With a Variable Cross-Section
,”
Mech. Mach. Theory
,
176
, p.
105027
.
8.
Xu
,
Q.
, and
Li
,
Y.
,
2011
, “
Analytical Modeling, Optimization and Testing of a Compound Bridge-Type Compliant Displacement Amplifier
,”
Mech. Mach. Theory
,
46
(
2
), pp.
183
200
.
9.
Chen
,
X.
,
Xie
,
Z.
,
Tan
,
H.
, and
Tai
,
K.
,
2023
, “
Design and Mechanical Modeling of High-Magnification and Low-Parasitic Displacement Microgripper With Three-Stage Displacement Amplification
,”
Mech. Mach. Theory
,
190
, p.
105463
.
10.
Howell
,
L. L.
,
2002
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
11.
Frisch-Fay
,
R.
,
1962
,
Flexible Bars
,
Butterworths
,
Washington, DC
.
12.
Hussein
,
H.
, and
Younis
,
M. I.
,
2020
, “
Analytical Study of the Snap-Through and Bistability of Beams With Arbitrarily Initial Shape
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
041001
.
13.
Deng
,
G.
,
Wang
,
N.
,
Zhou
,
C.
, and
Li
,
J.
,
2018
, “
A Simplified Analysis Method for the Piezo jet Dispenser With a Diamond Amplifier
,”
Sensors
,
18
(
7
), p.
2115
.
14.
Wu
,
H.
,
Lai
,
L.
,
Zhang
,
L.
, and
Zhu
,
L.
,
2022
, “
A Novel Compliant XY Micro-Positioning Stage Using Bridge-Type Displacement Amplifier Embedded With Scott-Russell Mechanism
,”
Precis. Eng.
,
73
, pp.
284
295
.
15.
Ma
,
H.-W.
,
Yao
,
S.-M.
,
Wang
,
L.-Q.
, and
Zhong
,
Z.
,
2006
, “
Analysis of the Displacement Amplification Ratio of Bridge-Type Flexure Hinge
,”
Sens. Actuators, A
,
132
(
2
), pp.
730
736
.
16.
Venkiteswaran
,
V. K.
, and
Su
,
H.
,
2018
, “
A Versatile 3R Pseudo-Rigid-Body Model for Initially Curved and Straight Compliant Beams of Uniform Cross Section
,”
ASME J. Mech. Des.
,
140
(
9
), p.
092305
.
17.
Holst
,
G. L.
,
Teichert
,
G. H.
, and
Jensen
,
B. D.
,
2011
, “
Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051002
.
18.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.
19.
Wu
,
K.
, and
Zheng
,
G.
,
2022
, “
Solutions to Large Beam-Deflection Problems by Taylor Series and Padé Approximant for Compliant Mechanisms
,”
Mech. Mach. Theory
,
177
, p.
105033
.
20.
Xiao
,
J.
,
Chen
,
Y.
,
Lu
,
X.
,
Xu
,
B.
,
Chen
,
X.
, and
Xu
,
J.
,
2019
, “
Three Dimensional Buckling Beam Under Cylindrical Constraint
,”
Int. J. Mech. Sci.
,
150
, pp.
348
355
.
21.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
22.
Awtar
,
S.
, and
Senm
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081009
.
23.
Chen
,
G.
, and
Ma
,
F.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
.
24.
Ma
,
F.
, and
Chen
,
G.
,
2016
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
.
25.
Ma
,
F.
,
Chen
,
G.
, and
Wang
,
H.
,
2020
, “
Large-Stroke Constant-Force Mechanisms Utilizing Second Buckling Mode of Flexible Beams: Evaluation Metrics and Design Approach
,”
ASME J. Mech. Des.
,
142
(
10
), p.
103303
.
26.
Radgolchin
,
M.
, and
Moeenfard
,
H.
,
2017
, “
A Constraint Model for Beam Flexure Modules With an Intermediate Semi-Rigid Element
,”
Int. J. Mech. Sci.
,
122
, pp.
167
183
.
27.
Bilancia
,
P.
,
Baggetta
,
M.
,
Hao
,
G.
, and
Berselli
,
G.
,
2021
, “
A Variable Section Beams Based Bi-BCM Formulation for the Kinetostatic Analysis of Cross-Axis Flexural Pivots
,”
Int. J. Mech. Sci.
,
205
, p.
106587
.
28.
Ma
,
F.
,
Chen
,
G.
, and
Hao
,
G.
,
2018
, “
Determining the Range of Allowable Axial Force for the Third-Order Beam Constraint Model
,”
Mech. Sci.
,
9
(
1
), pp.
71
79
.
29.
Li
,
Y.
,
Bi
,
S.
, and
Zhao
,
C.
,
2019
, “
Analytical Modeling and Analysis of Rhombus-Type Amplifier Based on Beam Flexures
,”
Mech. Mach. Theory
,
139
, pp.
195
211
.
30.
Wang
,
T.
,
Yu
,
J.
, and
Zhao
,
H.
,
2023
, “
A Family of Sweat Pore-Inspired Compliant Cellular Expansion Mechanisms
,”
Mech. Mach. Theory
,
183
, p.
105251
.
31.
Wu
,
K.
, and
Zheng
,
G.
,
2022
, “
Theoretical Analysis on Nonlinear Buckling, Post-Buckling of Slender Beams and Bi-Stable Mechanisms
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031015
.
32.
Sepahi
,
O.
,
Forouzan
,
M. R.
, and
Malekzadeh
,
P.
,
2010
, “
Post-Buckling Analysis of Variable Cross-Section Cantilever Beams Under Combined Load via Differential Quadrature Method
,”
KSCE J. Civil Eng.
,
14
(
2
), pp.
207
214
.
33.
Smaś
,
P.
,
2007
, “
Design of Clamped Columns for Maximizing the Axial Displacement at Buckling
,”
Struct. Multidiscipl. Optim.
,
33
(
3
), pp.
229
241
.
34.
Zhu
,
J.
,
Hao
,
G.
,
Liu
,
T.
, and
Li
,
H.
,
2023
, “
Design of an Over-Constraint Based Nearly-Constant Amplification Ratio Compliant Mechanism
,”
Mech. Mach. Theory
,
186
, p.
105347
.
35.
Simão
,
P. D.
,
Girão Coelho
,
A. M.
, and
Bijlaard
,
F. S. K.
,
2012
, “
Stability Design of Crane Columns in Mill Buildings
,”
Eng. Struct.
,
42
, pp.
51
82
.
36.
Chi
,
I.
,
Chang
,
P.
,
Tran
,
N. D. K.
, and
Wang
,
D.-A.
,
2012
, “
Kinetostatic Modeling of Planar Compliant Mechanisms With Flexible Beams, Linear Sliders, Multinary Rigid Links, and Multiple Loops
,”
ASME J. Mech. Rob.
,
13
(
5
), p.
051002
.
37.
Han
,
Q.
,
Huang
,
X.
, and
Shao
,
X.
,
2017
, “
Nonliear Kinetostatic Modeling of Double-Tensural Fully–Compliant Bistable Mechanisms
,”
Int. J. Non-Linear Mech.
,
93
, pp.
41
46
.
38.
Awtar
,
S.
,
Shimotsu
,
K.
, and
Sen
,
S.
,
2010
, “
Elastic Averaging in Flexure Mechanisms: A Three-Beam Parallelogram Flexure Case Study
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041006
.
39.
Hao
,
G.
,
2015
, “
Extended Nonlinear Analytical Models of Compliant Parallelogram Mechanisms: Third-Order Models
,”
Trans. Canadian Soc. Mech. Eng.
,
39
(
1
), pp.
71
83
.
40.
Ma
,
F.
, and
Chen
,
G.
,
2019
, “
Influence of Non-Ideal Fixed-end Constraints on Kinetostatic Behaviors of Compliant Bistable Mechanisms
,”
Mech. Mach. Theory
,
133
, pp.
267
277
.
41.
Wang
,
F.
,
Liang
,
C.
,
Tian
,
Y.
,
Zhao
,
X.
, and
Zhang
,
D.
,
2015
, “
Design of Piezoelectric-Actuated Microgripper With a Three-Stage Flexure-Based Amplification
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2205
2213
.
42.
Szufnarowski
,
F.
, and
Schneider
,
A.
,
2011
, “
Force Control of a Piezoelectric Actuator Based on a Statistical System Model and Dynamic Compensation
,”
Mech. Mach. Theory
,
46
(
10
), pp.
1507
1521
.
43.
Ghafarirad
,
H.
,
Rezaei
,
S. M.
,
Abdullah
,
A.
,
Zareinejad
,
M.
, and
Saadat
,
M.
,
2011
, “
Observer-Based Sliding Mode Control With Adaptive Perturbation Estimation for Micropositioning Actuators
,”
Precis. Eng.
,
35
(
2
), pp.
271
281
.
44.
Chi
,
I. T.
,
Chanthasopeephan
,
T.
, and
Wang
,
D.-A.
,
2022
, “
Design of a Parallel Gripper Based on Topology Synthesis and Evolutionary Optimization
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021008
.
You do not currently have access to this content.