Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Soft linear actuators have strong deformation ability and good environmental adaptability, which have been widely used in soft robot design. However, little work has focused on designing soft linear actuators with balanced performances, featuring fast driving speed, large output displacement, being lightweight, and miniaturization. Herein, we present a novel soft linear actuator design based on the Kresling origami structure. By driving the Kresling tubes with a servo motor, the soft linear actuator has good compliance and strong environmental adaptability and can achieve a driving speed, large driving force, and high control precision comparable to the traditional electrical motor. The analytical models of the Kresling tubes and the whole actuator are respectively derived to analyze the mechanical properties, determine the optimal geometry of the Kresling tube, and evaluate the driving performance of the whole actuator. The actuator prototype is fabricated by 3D printing, and the actual driving performance is tested. It is shown that the prototype can achieve a maximum output displacement of 18.9 mm without payload or 16 mm under a payload of 30 N. Finally, as a case study, the soft linear actuator is applied to a crawling robot, where the maximum moving speed of 28 mm/s is reached.

References

1.
Andrianesis
,
K.
, and
Tzes
,
A.
,
2015
, “
Development and Control of a Multifunctional Prosthetic Hand With Shape Memory Alloy Actuators
,”
J. Intell. Rob. Syst.
,
78
(
2
), pp.
257
289
.
2.
Cui
,
Y.
,
Matsubara
,
T.
, and
Sugimoto
,
K.
,
2017
, “
Pneumatic Artificial Muscle-Driven Robot Control Using Local Update Reinforcement Learning
,”
Adv. Rob.
,
31
(
8
), pp.
397
412
.
3.
Cho
,
K. H.
,
Jung
,
H. S.
,
Yang
,
S. Y.
,
Kim
,
Y.
,
Rodrigue
,
H.
,
Moon
,
H.
,
Koo
,
J. C.
, and
Choi
,
H. R.
,
2019
, “
Sliding Filament Joint Mechanism: Biomimetic Artificial Joint Mechanism for Artificial Skeletal Muscles
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
021004
.
4.
Hassan
,
A.
,
Bijanzad
,
A.
, and
Lazoglu
,
I.
,
2016
, “
Dynamic Analysis of a Novel Moving Magnet Linear Actuator
,”
IEEE Trans. Ind. Electron.
,
64
(
5
), pp.
3758
3766
.
5.
Fan
,
X.
,
Yin
,
J.
, and
Lu
,
Q.
,
2021
, “
Design and Analysis of a Novel Composited Electromagnetic Linear Actuator
,”
Actuators
,
11
(
1
), p.
6
.
6.
Li
,
X.
,
Du
,
R.
,
Denkena
,
B.
, and
Imiela
,
J.
,
2005
, “
Tool Breakage Monitoring Using Motor Current Signals for Machine Tools With Linear Motors
,”
IEEE Trans. Ind. Electron.
,
52
(
5
), pp.
1403
1408
.
7.
Hendrawan
,
Y. M.
,
Farrage
,
A.
, and
Uchiyama
,
N.
,
2019
, “
Iterative NC Program Modification and Energy Saving for a CNC Machine Tool Feed Drive System With Linear Motors
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9–12
), pp.
3543
3562
.
8.
Fujimoto
,
Y.
,
Kominami
,
T.
, and
Hamada
,
H.
,
2009
, “
Development and Analysis of a High Thrust Force Direct-Drive Linear Actuator
,”
IEEE Trans. Ind. Electron.
,
56
(
5
), pp.
1383
1392
.
9.
Hines
,
L.
,
Petersen
,
K.
,
Lum
,
G. Z.
, and
Sitti
,
M.
,
2017
, “
Soft Actuators for Small-Scale Robotics
,”
Adv. Mater.
,
29
(
13
), p.
1603483
.
10.
Cao
,
X.
,
Zhang
,
M.
,
Zhang
,
Z.
,
Xu
,
Y.
,
Xiao
,
Y.
, and
Li
,
T.
,
2019
, “
Review of Soft Linear Actuator and the Design of a Dielectric Elastomer Linear Actuator
,”
Acta Mech. Solida Sin.
,
32
(
5
), pp.
566
579
.
11.
El-Atab
,
N.
,
Mishra
,
R. B.
,
Al-Modaf
,
F.
,
Joharji
,
L.
,
Alsharif
,
A. A.
,
Alamoudi
,
H.
,
Diaz
,
M.
,
Qaiser
,
N.
, and
Hussain
,
M. M.
,
2020
, “
Soft Actuators for Soft Robotic Applications: A Review
,”
Adv. Intell. Syst.
,
2
(
10
), p.
2000128
.
12.
Milojević
,
A.
,
Linß
,
S.
,
Ćojbašić
,
Ž
, and
Handroos
,
H.
,
2021
, “
A Novel Simple, Adaptive, and Versatile Soft-Robotic Compliant Two-Finger Gripper With an Inherently Gentle Touch
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011015
.
13.
Tang
,
X.
,
Li
,
H.
,
Ma
,
T.
,
Yang
,
Y.
,
Luo
,
J.
,
Wang
,
H.
, and
Jiang
,
P.
,
2022
, “
A Review of Soft Actuator Motion: Actuation, Design, Manufacturing and Applications
,”
Actuators
,
11
(
11
), p.
331
.
14.
Hawkes
,
E. W.
,
Blumenschein
,
L. H.
,
Greer
,
J. D.
, and
Okamura
,
A. M.
,
2017
, “
A Soft Robot That Navigates Its Environment Through Growth
,”
Sci. Rob.
,
2
(
8
), p.
eaan3028
.
15.
Walker
,
J.
,
Zidek
,
T.
,
Harbel
,
C.
,
Yoon
,
S.
,
Strickland
,
F. S.
,
Kumar
,
S.
, and
Shin
,
M.
,
2020
, “
Soft Robotics: A Review of Recent Developments of Pneumatic Soft Actuators
,”
Actuators
,
9
(
1
), p.
3
.
16.
Wang
,
N.
,
Chen
,
B.
,
Ge
,
X.
,
Zhang
,
X.
, and
Chen
,
W.
,
2021
, “
Design, Kinematics, and Application of Axially and Radially Expandable Modular Soft Pneumatic Actuators
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021019
.
17.
Schmitt
,
F.
,
Piccin
,
O.
,
Bayle
,
B.
,
Renaud
,
P.
, and
Barbé
,
L.
,
2021
, “
Inverted Honeycomb Cell as a Reinforcement Structure for Building Soft Pneumatic Linear Actuators
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011020
.
18.
Marchese
,
A. D.
,
Katzschmann
,
R. K.
, and
Rus
,
D.
,
2015
, “
A Recipe for Soft Fluidic Elastomer Robots
,”
Soft Rob.
,
2
(
1
), pp.
7
25
.
19.
Xie
,
Q.
,
Wang
,
T.
,
Yao
,
S.
,
Zhu
,
Z.
,
Tan
,
N.
, and
Zhu
,
S.
,
2020
, “
Design and Modeling of a Hydraulic Soft Actuator With Three Degrees of Freedom
,”
Smart Mater. Struct.
,
29
(
12
), p.
125017
.
20.
Lu
,
M.
,
Chen
,
G.
,
He
,
Q.
,
Zong
,
W.
,
Yu
,
Z.
, and
Dai
,
Z.
,
2021
, “
Development of a Hydraulic Driven Bionic Soft Gecko Toe
,”
ASME J. Mech. Rob.
,
13
(
5
), p.
051005
.
21.
Sadeghi
,
A.
,
Beccai
,
L.
, and
Mazzolai
,
B.
,
2012
, “
Innovative Soft Robots Based on Electro-Rheological Fluids
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura, Algarve, Portugal
,
Oct. 7–12
, IEEE, pp.
4237
4242
.
22.
Mazursky
,
A.
,
Koo
,
J. H.
, and
Yang
,
T. H.
,
2019
, “
Design, Modeling, and Evaluation of a Slim Haptic Actuator Based on Electrorheological Fluid
,”
J. Intell. Mater. Syst. Struct.
,
30
(
17
), pp.
2521
2533
.
23.
Mazursky
,
A.
,
Koo
,
J. H.
, and
Yang
,
T. H.
,
2020
, “
A Compact and Compliant Electrorheological Actuator for Generating a Wide Range of Haptic Sensations
,”
Smart Mater. Struct.
,
29
(
5
), p.
055028
.
24.
Wang
,
N.
,
Cui
,
C.
,
Chen
,
B.
,
Guo
,
H.
, and
Zhang
,
X.
,
2019
, “
Design of Translational and Rotational Bistable Actuators Based on Dielectric Elastomer
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041011
.
25.
Zhao
,
H.
,
Hussain
,
A. M.
,
Israr
,
A.
,
Vogt
,
D. M.
,
Duduta
,
M.
,
Clarke
,
D. R.
, and
Wood
,
R. J.
,
2020
, “
A Wearable Soft Haptic Communicator Based on Dielectric Elastomer Actuators
,”
Soft Rob.
,
7
(
4
), pp.
451
461
.
26.
Chen
,
B.
,
Wang
,
N.
,
Wang
,
R.
,
Zhu
,
B.
,
Zhang
,
X.
,
Sun
,
W.
, and
Chen
,
W.
,
2023
, “
Automatic Design of Dielectric Elastomer-Based Crawling Robots Using Shape and Topology Optimization
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
021006
.
27.
Wang
,
H. S.
,
Cho
,
J.
,
Song
,
D. S.
,
Jang
,
J. H.
,
Jho
,
J. Y.
, and
Park
,
J. H.
,
2017
, “
High-Performance Electroactive Polymer Actuators Based on Ultrathick Ionic Polymer–Metal Composites With Nanodispersed Metal Electrodes
,”
ACS Appl. Mater. Interfaces
,
9
(
26
), pp.
21998
22005
.
28.
Ma
,
S.
,
Zhang
,
Y.
,
Liang
,
Y.
,
Ren
,
L.
,
Tian
,
W.
, and
Ren
,
L.
,
2020
, “
High-Performance Ionic-Polymer-Metal Composite: Toward Large-Deformation Fast-Response Artificial Muscles
,”
Adv. Funct. Mater.
,
30
(
7
), p.
1908508
.
29.
Zhang
,
H.
,
Lin
,
Z.
,
Hu
,
Y.
,
Ma
,
S.
,
Liang
,
Y.
,
Ren
,
L.
, and
Ren
,
L.
,
2023
, “
Low-Voltage Driven Ionic Polymer-Metal Composite Actuators: Structures, Materials, and Applications
,”
Adv. Sci.
,
10
(
10
), p.
2206135
.
30.
Wang
,
W.
,
Li
,
C.
,
Rodrigue
,
H.
,
Yuan
,
F.
,
Han
,
M. W.
,
Cho
,
M.
, and
Ahn
,
S. H.
,
2017
, “
Kirigami/Origami-Based Soft Deployable Reflector for Optical Beam Steering
,”
Adv. Funct. Mater.
,
27
(
7
), p.
1604214
.
31.
Zhou
,
Z. W.
,
Yan
,
Q. H.
,
Liu
,
C. H.
, and
Fan
,
S. S.
,
2017
, “
An Arm-Like Electrothermal Actuator Based on Superaligned Carbon Nanotube/Polymer Composites
,”
New Carbon Mater.
,
32
(
5
), pp.
411
418
.
32.
Cho
,
K. H.
,
Kim
,
H. M.
,
Kim
,
Y.
,
Yang
,
S. Y.
, and
Choi
,
H. R.
,
2019
, “
Multiple Inputs-Single Accumulated Output Mechanism for Soft Linear Actuators
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011007
.
33.
Jin
,
H.
,
Ouyang
,
Y.
,
Chen
,
H.
,
Kong
,
J.
,
Li
,
W.
, and
Zhang
,
S.
,
2021
, “
Modeling and Motion Control of a Soft SMA Planar Actuator
,”
IEEE/ASME Trans. Mechatron.
,
27
(
2
), pp.
916
927
.
34.
Wang
,
X.
,
Gordaninejad
,
F.
,
Calgar
,
M.
,
Liu
,
Y.
,
Sutrisno
,
J.
, and
Fuchs
,
A.
,
2009
, “
Sensing Behavior of Magnetorheological Elastomers
,”
ASME J. Mech. Des.
,
131
(
9
), p.
091004
.
35.
Mao
,
G.
,
Schiller
,
D.
,
Danninger
,
D.
,
Hailegnaw
,
B.
,
Hartmann
,
F.
,
Stockinger
,
T.
,
Drack
,
M.
,
Arnold
,
N.
, and
Kaltenbrunner
,
M.
,
2022
, “
Ultrafast Small-Scale Soft Electromagnetic Robots
,”
Nat. Commun.
,
13
(
1
), p.
4456
.
36.
Ze
,
Q.
,
Wu
,
S.
,
Nishikawa
,
J.
,
Dai
,
J.
,
Sun
,
Y.
,
Leanza
,
S.
,
Zemelka
,
C.
,
Novelino
,
L. S.
,
Paulino
,
G. H.
, and
Zhao
,
R. R.
,
2022
, “
Soft Robotic Origami Crawler
,”
Sci. Adv.
,
8
(
13
), p.
eabm7834
.
37.
Xu
,
Y.
,
Yan
,
D.
,
Zhang
,
K.
,
Li
,
X.
,
Xing
,
Y.
, and
Shao
,
L. H.
,
2022
, “
Soft Robot Based on Hyperelastic Buckling Controlled by Discontinuous Magnetic Field
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011008
.
38.
Zhang
,
L.
,
Zhao
,
S.
,
Zhou
,
X.
,
Jing
,
X.
,
Zhou
,
Y.
,
Wang
,
Y.
,
Zhu
,
Y.
, et al.,
2023
, “
A Magnetic-Driven Multi-motion Robot With Position/Orientation Sensing Capability
,”
Research
,
6
, p.
0177
.
39.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.
40.
Fang
,
H.
,
Chu
,
S. C. A.
,
Xia
,
Y.
, and
Wang
,
K. W.
,
2018
, “
Programmable Self-Locking Origami Mechanical Metamaterials
,”
Adv. Mater.
,
30
(
15
), p.
1706311
.
41.
Zhai
,
Z.
,
Wang
,
Y.
, and
Jiang
,
H.
,
2018
, “
Origami-Inspired, On-Demand Deployable and Collapsible Mechanical Metamaterials With Tunable Stiffness
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
9
), pp.
2032
2037
.
42.
Yang
,
Y.
, and
You
,
Z.
,
2018
, “
Geometry of Transformable Metamaterials Inspired by Modular Origami
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021001
.
43.
Rus
,
D.
, and
Tolley
,
M. T.
,
2018
, “
Design, Fabrication and Control of Origami Robots
,”
Nat. Rev. Mater.
,
3
(
6
), pp.
101
112
.
44.
Leanza
,
S.
,
Wu
,
S.
,
Sun
,
X.
,
Qi
,
H. J.
, and
Zhao
,
R. R.
,
2023
, “
Active Materials for Functional Origami
,”
Adv. Mater.
,
36
(
9
), p.
2302066
.
45.
Robertson
,
M. A.
,
Kara
,
O. C.
, and
Paik
,
J.
,
2021
, “
Soft Pneumatic Actuator-Driven Origami-Inspired Modular Robotic “Pneumagami”
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
72
85
.
46.
Junfeng
,
H. E.
,
Guilin
,
W. E. N.
,
Jie
,
L. I. U.
,
Liang
,
X. U. E.
, and
Xie
,
Y. M.
,
2024
, “
A Modular Continuous Robot Constructed by Miura-Derived Origami Tubes
,”
Int. J. Mech. Sci.
,
261
, p.
108690
.
47.
Olan’g
,
Q.
,
Peng
,
H.
, and
Mao
,
T.
,
2022
, “
Characteristics of a Small Arbitrary Walking and Jumping Composite Soft Actuator With Origami Structure
,”
Sens. Actuators, A
,
347
, p.
113904
.
48.
Kresling
,
B.
,
2012
, “
Origami-Structures in Nature: Lessons in Designing “Smart” Materials
,”
MRS Online Proc. Lib.
,
1420
.
49.
Jin
,
T.
,
Li
,
L.
,
Wang
,
T.
,
Wang
,
G.
,
Cai
,
J.
,
Tian
,
Y.
, and
Zhang
,
Q.
,
2021
, “
Origami-Inspired Soft Actuators for Stimulus Perception and Crawling Robot Applications
,”
IEEE Trans. Rob.
,
38
(
2
), pp.
748
764
.
50.
Filipov
,
E. T.
,
Liu
,
K.
,
Tachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G. H.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids Struct.
,
124
, pp.
26
45
.
51.
Woodruff
,
S. R.
, and
Filipov
,
E. T.
,
2020
, “
A Bar and Hinge Model Formulation for Structural Analysis of Curved-Crease Origami
,”
Int. J. Solids Struct.
,
204
, pp.
114
127
.
You do not currently have access to this content.