Abstract

Most studies regarding models of tensegrity systems miss the possibility of large static deformations or provide elaborate and lengthy solutions to determine the system dynamics. Contrarily, this work presents a straightforward methodology to find the dynamic characteristics of a guyed tensegrity beam structure, allowing the application of vibration control strategies in conditions of large deformations. The methodology is based on a low-order, adaptive, nonlinear finite element model with pre-stressed components. The method is applied to numerical and experimental models of a class 2 tensegrity structure with a high length-to-width aspect ratio. Image processing and accelerometer data are combined to extract the experimental natural frequencies of the structure, which are compared to numerical results. Prony’s method is applied to estimate damping, and a numerical control strategy is employed using the dynamical model of the structure.

References

1.
Fuller
,
R. B.
, and
Applewhite
,
E. J.
,
1975
,
Synergetics: Explorations in the Geometry of Thinking
,
Macmillan
,
Sebastopol, CA
.
2.
Zhang
,
J. Y.
, and
Ohsaki
,
M.
,
2015
,
Tensegrity Structures—Form, Stability and Symmetry
,
Springer
,
New York
.
3.
Motro
,
R.
,
1992
, “
Tensegrity Systems: The State of the Art
,”
Int. J. Space Struct.
,
7
(
2
), pp.
75
83
.
4.
Estrada
,
G. G.
,
Bungartz
,
H. -J.
, and
Mohrdieck
,
C.
,
2006
, “
Numerical Form-Finding of Tensegrity Structures
,”
Int. J. Solids Struct.
,
43
(
22
), pp.
6855
6868
.
5.
Kan
,
Z.
,
Peng
,
H.
,
Chen
,
B.
,
Xie
,
X.
, and
Sun
,
L.
,
2019
, “
Investigation of Strut Collision in Tensegrity Statics and Dynamics
,”
Int. J. Solids Struct.
,
167
, pp.
202
219
.
6.
Kan
,
Z.
,
Song
,
N.
,
Peng
,
H.
,
Chen
,
B.
, and
Song
,
X.
,
2021
, “
A Comprehensive Framework for Multibody System Analysis With Clustered Cables: Examples of Tensegrity Structures
,”
Int. J. Solids Struct.
,
210
, pp.
289
309
.
7.
Ashwear
,
N.
, and
Eriksson
,
A.
,
2014
, “
Natural Frequencies Describe the Pre-stress in Tensegrity Structures
,”
Comput. Struct.
,
136
, pp.
162
171
.
8.
Zhang
,
J.
, and
Ohsaki
,
M.
,
2006
, “
Adaptive Force Density Method for Form-Finding Problem of Tensegrity Structures
,”
Int. J. Solids Struct.
,
43
(
18
), pp.
5658
5673
.
9.
Paul
,
C.
,
Valero-Cuevas
,
F. J.
, and
Lipson
,
H.
,
2006
, “
Design and Control of Tensegrity Robots for Locomotion
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
944
957
.
10.
Goyal
,
R.
,
Skelton
,
R. E.
, and
Peraza Hernandez
,
E. A.
,
2020
, “
Efficient Design of Lightweight Reinforced Tensegrities Under Local and Global Failure Constraints
,”
ASME J. Appl. Mech.
,
87
(
11
), p.
111005
.
11.
Ali
,
N. B. H.
, and
Smith
,
I.
,
2010
, “
Dynamic Behavior and Vibration Control of a Tensegrity Structure
,”
Int. J. Solids Struct.
,
47
(
9
), pp.
1285
1296
.
12.
Yang
,
S.
, and
Sultan
,
C.
,
2019
, “
Deployment of Foldable Tensegrity-Membrane Systems Via Transition Between Tensegrity Configurations and Tensegrity-Membrane Configurations
,”
Int. J. Solids Struct.
,
160
, pp.
103
119
.
13.
Zhu
,
D.
, and
Deng
,
H.
,
2020
, “
Deployment of Tensegrities Subjected to Load-Carrying Stiffness Constraints
,”
Int. J. Solids Struct.
,
206
, pp.
224
235
.
14.
Tibert
,
A. G.
, and
Pellegrino
,
S.
,
2003
, “
Deployable Tensegrity Masts
,”
44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Norfolk, VA
,
Apr. 7–10
, p.
1978
.
15.
Sultan
,
C.
, and
Skelton
,
R.
,
2003
, “
Deployment of Tensegrity Structures
,”
Int. J. Solids Struct.
,
40
(
18
), pp.
4637
4657
.
16.
Feng
,
X.
,
Miah
,
M. S.
, and
Ou
,
Y.
,
2018
, “
Dynamic Behavior and Vibration Mitigation of a Spatial Tensegrity Beam
,”
Eng. Struct.
,
171
, pp.
1007
1016
.
17.
Schorr
,
P.
,
Chavez
,
J.
,
Zentner
,
L.
, and
Böhm
,
V.
,
2021
, “
Reconfiguration of Planar Quadrilateral Linkages Utilizing the Tensegrity Principle
,”
Mech. Mach. Theory
,
156
, p.
104172
.
18.
Begey
,
J.
,
Vedrines
,
M.
,
Andreff
,
N.
, and
Renaud
,
P.
,
2020
, “
Selection of Actuation Mode for Tensegrity Mechanisms: The Case Study of the Actuated Snelson Cross
,”
Mech. Mach. Theory
,
152
, p.
103881
.
19.
Muralidharan
,
V.
, and
Wenger
,
P.
,
2021
, “
Optimal Design and Comparative Study of Two Antagonistically Actuated Tensegrity Joints
,”
Mech. Mach. Theory
,
159
, p.
104249
.
20.
Chen
,
L.-H.
,
Kim
,
K.
,
Tang
,
E.
,
Li
,
K.
,
House
,
R.
,
Zhu
,
E. L.
,
Fountain
,
K.
,
Agogino
,
A. M.
,
Agogino
,
A.
, and
Sunspiral
,
V.
,
2017
, “
Soft Spherical Tensegrity Robot Design Using Rod-Centered Actuation and Control
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
025001
.
21.
Fazli
,
N.
, and
Abedian
,
A.
,
2011
, “
Design of Tensegrity Structures for Supporting Deployable Mesh Antennas
,”
Sci. Iranica
,
18
(
5
), pp.
1078
1087
.
22.
Scoccia
,
C.
,
Carbonari
,
L.
,
Palmieri
,
G.
,
Callegari
,
M.
,
Rossi
,
M.
,
Munafó
,
P.
,
Marchione
,
F.
, and
Chiappini
,
G.
,
2022
, “
Design of a Tensegrity Servo-actuated Structure for Civil Applications
,”
ASME J. Mech. Des.
,
144
(
4
), p.
043302
.
23.
Bansod
,
Y. D.
,
Matsumoto
,
T.
,
Nagayama
,
K.
, and
Bursa
,
J.
,
2018
, “
A Finite Element Bendo-tensegrity Model of Eukaryotic Cell
,”
ASME J. Biomech. Eng.
,
140
(
10
), p.
101001
.
24.
Raafat
,
M.
, and
Baz
,
A.
,
2022
, “
Damping and Bandgap Characteristics of a Viscoelastic Tensegrity Damper
,”
ASME J. Vib. Acoust.
,
144
(
1
), p.
011001
.
25.
Pham
,
N. K.
, and
Peraza Hernandez
,
E. A.
,
2021
, “
Modeling and Design Exploration of a Tensegrity-Based Twisting Wing
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031019
.
26.
Vasquez
,
R. E.
,
Crane III
,
C. D.
, and
Correa
,
J. C.
,
2014
, “
Analysis of a Planar Tensegrity Mechanism for Ocean Wave Energy Harvesting
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031015
.
27.
Dong
,
W.
,
Stafford
,
P. J.
, and
Ruiz-Teran
,
A. M.
,
2019
, “
Inverse Form-Finding for Tensegrity Structures
,”
Comput. Struct.
,
215
, pp.
27
42
.
28.
Yuan
,
S.
, and
Yang
,
B.
,
2019
, “
The Fixed Nodal Position Method for Form Finding of High-Precision Lightweight Truss Structures
,”
Int. J. Solids Struct.
,
161
, pp.
82
95
.
29.
Koohestani
,
K.
,
2020
, “
Innovative Numerical Form-Finding of Tensegrity Structures
,”
Int. J. Solids Struct.
,
206
, pp.
304
313
.
30.
Wang
,
Y.
, and
Senatore
,
G.
,
2020
, “
Extended Integrated Force Method for the Analysis of Prestress-Stable Statically and Kinematically Indeterminate Structures
,”
Int. J. Solids Struct.
,
202
, pp.
798
815
.
31.
Wang
,
Y.
,
Xu
,
X.
, and
Luo
,
Y.
,
2020
, “
Topology Design of General Tensegrity With Rigid Bodies
,”
Int. J. Solids Struct.
,
202
, pp.
278
298
.
32.
Su
,
Y.
,
Zhang
,
J.
,
Ohsaki
,
M.
, and
Wu
,
Y.
,
2020
, “
Topology Optimization and Shape Design Method for Large-Span Tensegrity Structures With Reciprocal Struts
,”
Int. J. Solids Struct.
,
206
, pp.
9
22
.
33.
Wang
,
Y.
,
Xu
,
X.
, and
Luo
,
Y.
,
2021
, “
A Unifying Framework for Form-Finding and Topology-Finding of Tensegrity Structures
,”
Comput. Struct.
,
247
, p.
106486
.
34.
Fernández-Ruiz
,
M. A.
,
Hernández-Montes
,
E.
,
Carbonell-Márquez
,
J. F.
, and
Gil-Martín
,
L. M.
,
2019
, “
Octahedron Family: The Double-Expanded Octahedron Tensegrity
,”
Int. J. Solids Struct.
,
165
, pp.
1
13
.
35.
Fernández-Ruiz
,
M. A.
,
Hernandez-Montes
,
E.
, and
Gil-Martin
,
L. M.
,
2021
, “
The Octahedron Family as a Source of Tensegrity Families: The X-Octahedron Family
,”
Int. J. Solids Struct.
,
208–209
, pp.
1
12
.
36.
Liu
,
S.
,
Li
,
Q.
,
Wang
,
P.
, and
Guo
,
F.
,
2020
, “
Kinematic and Static Analysis of a Novel Tensegrity Robot
,”
Mech. Mach. Theory
,
149
, p.
103788
.
37.
Zhu
,
D.
,
Deng
,
H.
, and
Wu
,
X.
,
2020
, “
Selecting Active Members to Drive the Mechanism Displacement of Tensegrities
,”
Int. J. Solids Struct.
,
191–192
, pp.
278
292
.
38.
Kebiche
,
K.
,
Kazi-Aoual
,
M.
, and
Motro
,
R.
,
1999
, “
Geometrical Non-linear Analysis of Tensegrity Systems
,”
Eng. Struct.
,
21
(
9
), pp.
864
876
.
39.
Kan
,
Z.
,
Peng
,
H.
, and
Chen
,
B.
,
2018
, “
Complementarity Framework for Nonlinear Analysis of Tensegrity Structures With Slack Cables
,”
AIAA J.
,
56
(
12
), pp.
5013
5027
.
40.
Shi
,
C.
,
Guo
,
H.
,
Cheng
,
Y.
,
Liu
,
R.
, and
Deng
,
Z.
,
2020
, “
Design and Multi-objective Comprehensive Optimization of Cable-Strut Tensioned Antenna Mechanism
,”
Acta Astronaut.
,
1
(
178
), pp.
406
422
.
41.
Tran
,
H. C.
, and
Lee
,
J.
,
2011
, “
Geometric and Material Nonlinear Analysis of Tensegrity Structures
,”
Acta Mech. Sin.
,
27
(
6
), pp.
938
949
.
42.
Zhang
,
L.-Y.
,
Li
,
Y.
,
Cao
,
Y.-P.
,
Feng
,
X.-Q.
, and
Gao
,
H.
,
2013
, “
A Numerical Method for Simulating Nonlinear Mechanical Responses of Tensegrity Structures Under Large Deformations
,”
J. Appl. Mech.
,
80
(
6
), p.
061018
.
43.
Furet
,
M.
, and
Wenger
,
P.
,
2019
, “
Kinetostatic Analysis and Actuation Strategy of a Planar Tensegrity 2-X Manipulator
,”
J. Mech. Rob.
,
11
(
6
), p.
060904
.
44.
Kurka
,
P.
,
Izuka
,
J.
,
Gonzalez
,
P.
,
Burdick
,
J.
, and
Elfes
,
A.
,
2014
, “
Vibration of a Long, Tip Pulled Deflected Beam
,”
AIAA J.
,
52
(
7
), pp.
1559
1563
.
45.
Kurka
,
P.
,
Izuka
,
J.
,
Gonzalez
,
P.
, and
Teixeira
,
L.
,
2016
, “
Large Deflections and Vibrations of a Tip Pulled Beam With Variable Transversal Section
,”
Mech. Syst. Signal Process.
,
79
, pp.
271
288
.
46.
Ramos
,
P.
,
Izuka
,
J.
, and
Kurka
,
P.
,
2016
, “
Experimental Robust Control of Vibration of a Long Elastic Guyed Beam Arm With Large Deformation and Variable Transversal Section
,”
Proceedings of ISMA2016 Including USD2016
,
Leuven, Belgium
,
Sept. 19–21
, pp.
155
170
.
47.
Lai
,
G.
,
Plummer
,
A.
, and
Cleaver
,
D.
,
2020
, “
Distributed Actuation and Control of a Morphing Tensegrity Structure
,”
ASME J. Dyn. Syst. Meas. Control
,
142
(
7
), p.
071006
.
48.
Skelton
,
R. E.
, and
de Oliveira
,
M.
,
2009
,
Tensegrity Systems
,
Springer US
,
New York
, pp.
45
72
.
49.
Nelson
,
C. A.
,
2015
, “
A Software Tool for Analyzing Motions and Loading in Spatial Tensegrity Structures
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
.
50.
Crisfield
,
M. A.
,
1991
,
Non-linear Finite Element Analysis of Solids and Structures
,
John Wiley & Sons
,
Chichester, UK
.
51.
Bathe
,
K. J.
, and
Cimento
,
A. P.
,
1980
, “
Some Practical Procedures for the Solution of Nonlinear Finite Element Equations
,”
Comput. Methods Appl. Mech. Eng.
,
22
(
1
), pp.
59
85
.
52.
Boehler
,
Q.
,
Charpentier
,
I.
,
Vedrines
,
M. S.
, and
Renaud
,
P.
,
2015
, “
Definition and Computation of Tensegrity Mechanism Workspace
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
044502
.
53.
Sultan
,
C.
,
2009
, “
Designing Structures for Dynamical Properties Via Natural Frequencies Separation: Application to Tensegrity Structures Design
,”
Mech. Syst. Signal Process.
,
23
(
4
), pp.
1112
1122
.
54.
Sultan
,
C.
,
2010
, “
Proportional Damping Approximation Using the Energy Gain and Simultaneous Perturbation Stochastic Approximation
,”
Mech. Syst. Signal Process.
,
24
(
7
), pp.
2210
2224
.
55.
Kurka
,
P. R. G.
,
2015
,
Vibrações de sistemas dinâmicos – anâlise e síntese
,
LTC
,
Barueri
.
56.
Holland
,
D. B.
,
Virgin
,
L. N.
, and
Plaut
,
R. H.
,
2008
, “
Large Deflections and Vibration of a Tapered Cantilever Pulled at Its Tip by a Cable
,”
J. Sound Vib.
,
310
(
1–2
), pp.
433
441
.
57.
Zhao
,
W.
,
Pashkevich
,
A.
,
Klimchik
,
A.
, and
Chablat
,
D.
,
2022
, “
Elastostatic Modeling of Multi-link Flexible Manipulator Based on Two-Dimensional Dual-Triangle Tensegrity Mechanism
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021002
.
58.
Arsenault
,
M.
,
2011
, “
Stiffness Analysis of a 2DOF Planar Tensegrity Mechanism
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021011
.
You do not currently have access to this content.