Abstract

This article presents a novel architecture for the actuation and transmission system of a 5-degrees-of-freedom (DOFs) compliant robot manipulator. The compliant behavior of the robot is achieved using inherently compliant magneto-rheological (MR) clutches introduced in antagonistic pairs in every joint of the manipulator. All five antagonistic MR clutch pairs are driven using a single brushless DC motor located in the base of the robot. The MR clutch pairs are coupled to the motor through a system of shafts, belts, and gears. Several possible architectures for realizing a suitable drive train are presented, and the advantages and disadvantages of each concept are analyzed. The most efficient architecture for the drive train is selected to complete the design of the manipulator. The kinematics of the manipulator using the adopted architecture is further analyzed, and the workspace of the system is presented. To the best of our knowledge, this is the first 5-DOF, fully actuated, compliant robotic manipulator that uses a single DC motor to achieve five independent axes of rotations.

References

1.
Christensen
,
H.
,
Amato
,
N.
,
Yanco
,
H.
,
Mataric
,
M.
,
Choset
,
H.
,
Drobnis
,
A.
,
Goldberg
,
K.
,
Grizzle
,
J.
,
Hager
,
G.
,
Hollerbach
,
J.
, and
Hutchinson
,
S.
,
2021
, “
A Roadmap for Us Robotics—From Internet to Robotics 2020 Edition
,”
Found. Trends Rob.
,
8
(
4
), pp.
307
424
.
2.
Universal Robot
,
2021
, “
Universal Robots e-Series User Manual, UR5e
,” https://s3-eu-west-1.amazonaws.com/ur-support-site/165930/1010082_UR5e_User_Manual_uk_Global.pdf, Universal Robots A/S, AccessedJanuary 20, 2023.
3.
Maheu
,
V.
,
Archambault
,
P. S.
,
Frappier
,
J.
, and
Routhier
,
F.
,
2011
, “
Evaluation of the JACO Robotic Arm: Clinico-Economic Study for Powered Wheelchair Users With Upper-Extremity Disabilities
,”
2011 IEEE International Conference on Rehabilitation Robotics (ICORR 2011)
,
Zurich, Switzerland
,
June 29–July 1
,
IEEE
, pp.
1
5
.
4.
Campeau-Lecours
,
A.
,
Maheu
,
V.
,
Lepage
,
S.
,
Lamontagne
,
H.
,
Latour
,
S.
,
Paquet
,
L.
, and
Hardie
,
N.
,
2016
, “
Jaco Assistive Robotic Device: Empowering People With Disabilities Through Innovative Algorithms
,”
Proceedings of the Rehabilitation Engineering and Assistive Technology Society of North America Conference (RESNA)
,
Arlington, VA
,
July 12–14
.
6.
Shepherd
,
S.
, and
Buchstab
,
A.
,
2014
, “
Kuka Robots On-Site
,”
Robotic Fabrication in Architecture, Art and Design 2014
,
Springer
, pp.
373
380
.
7.
Gealy
,
D. V.
,
McKinley
,
S.
,
Yi
,
B.
,
Wu
,
P.
,
Downey
,
P. R.
,
Balke
,
G.
,
Zhao
,
A.
,
Guo
,
M.
,
Thomasson
,
R.
,
Sinclair
,
A.
, and
Cuellar
,
P.
,
2019
, “
Quasi-Direct Drive for Low-Cost Compliant Robotic Manipulation
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
,
IEEE
, pp.
437
443
.
8.
Bledt
,
G.
,
Powell
,
M. J.
,
Katz
,
B.
,
Di Carlo
,
J.
,
Wensing
,
P. M.
, and
Kim
,
S.
,
2018
, “
MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
,
IEEE
, pp.
2245
2252
.
9.
He
,
J.
, and
Gao
,
F.
,
2020
, “
Mechanism, Actuation, Perception, and Control of Highly Dynamic Multilegged Robots: A Review
,”
Chinese J. Mech. Eng.
,
33
(
1
), pp.
1
30
.
10.
Pratt
,
G.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
1995 IEEE/RSJ International Conference on Intelligent Robots and Systems 95. Human Robot Interaction and Cooperative Robots
, Vol.
1
,
Pittsburgh, PA
,
Aug. 5–9
,
IEEE
, pp.
399
406
.
11.
Cummings
,
J. P.
,
Ruiken
,
D.
,
Wilkinson
,
E. L.
,
Lanighan
,
M. W.
,
Grupen
,
R. A.
, and
Sup
,
F. C.
,
2016
, “
A Compact, Modular Series Elastic Actuator
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041016
.
12.
Cremer
,
S.
,
Mastromoro
,
L.
, and
Popa
,
D. O.
,
2016
, “
On the Performance of the Baxter Research Robot
,”
2016 IEEE International Symposium on Assembly and Manufacturing (ISAM)
,
Fort Worth, TX
,
Aug. 21–22
,
IEEE
, pp.
106
111
.
13.
Rethink Robotics
,“
The New Sawyer Black Edition
,”
Brochure
, https://www.rethinkrobotics.com/fileadmin/user_upload/sawyer/rr-blackedition-brochure_low.pdf, Accessed January 20, 2023.
14.
Refour
,
E. M.
,
Sebastian
,
B.
,
Chauhan
,
R. J.
, and
Ben-Tzvi
,
P.
,
2019
, “
A General Purpose Robotic Hand Exoskeleton With Series Elastic Actuation
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
060902
.
15.
Chew
,
C.-M.
,
Hong
,
G.-S.
, and
Zhou
,
W.
,
2004
, “
Series Damper Actuator: A Novel Force/Torque Control Actuator
,”
4th IEEE/RAS International Conference on Humanoid Robots 2004
, Vol.
2
,
Santa Monica, CA
,
Nov. 10–12
,
IEEE
, pp.
533
546
.
16.
Bicchi
,
A.
, and
Tonietti
,
G.
,
2004
, “
Dealing With the Safety-Performance Tradeoff in Robot Arms Design and Control
,”
IEEE Rob. Autom. Mag.
,
11
(
2
), pp.
22
33
.
17.
Kani
,
M. H. H.
,
Yaghini Bonabi
,
H. A.
,
Jalaly Bidgoly
,
H.
,
Javad Yazdanpanah
,
M.
, and
Nili Ahmadabadi
,
M.
,
2016
, “
Design and Implementation of a Distributed Variable Impedance Actuator Using Parallel Linear Springs
,”
J. Mech. Rob.
,
8
(
2
), p.
021024
.
18.
Tondu
,
B.
, and
Lopez
,
P.
,
2000
, “
Modeling and Control of Mckibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst. Mag.
,
20
(
2
), pp.
15
38
.
19.
Krishnan
,
G.
,
Bishop-Moser
,
J.
,
Kim
,
C.
, and
Kota
,
S.
,
2015
, “
Kinematics of a Generalized Class of Pneumatic Artificial Muscles
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041014
.
20.
Shafer
,
A. S.
, and
Kermani
,
M. R.
,
2010
, “
On the Feasibility and Suitability of MR Fluid Clutches in Human-Friendly Manipulators
,”
IEEE/ASME Trans. Mechatron.
,
16
(
6
), pp.
1073
1082
.
21.
Takesue
,
N.
,
Furusho
,
J.
, and
Kiyota
,
Y.
,
2004
, “
Fast Response MR-Fluid Actuator
,”
JSME. Int. J. C-Mech. Syst. Mach. Elem. Manuf.
,
47
(
3
), pp.
783
791
.
22.
Chen
,
B.
,
Zi
,
B.
,
Wang
,
Z.
,
Li
,
Y.
, and
Qian
,
J.
,
2021
, “
Development of Robotic Ankle–Foot Orthosis With Series Elastic Actuator and Magneto-Rheological Brake
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011002
.
23.
Pisetskiy
,
S.
, and
Kermani
,
M. R.
,
2020
, “
A Concept of a Miniaturized MR Clutch Utilizing MR Fluid in Squeeze Mode
,”
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 25–29
,
IEEE
, pp.
6347
6352
.
24.
Burkhard
,
N.
,
Frishman
,
S.
,
Gruebele
,
A.
,
Whitney
,
J. P.
,
Goldman
,
R.
,
Daniel
,
B.
, and
Cutkosky
,
M.
,
2017
, “
A Rolling-Diaphragm Hydrostatic Transmission for Remote MR-Guided Needle Insertion
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
,
IEEE
, pp.
1148
1153
.
25.
Denis
,
J.
,
Plante
,
J.-S.
, and
Girard
,
A.
,
2021
, “
Low-Level Force-Control of MR-Hydrostatic Actuators
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
3849
3856
.
26.
Véronneau
,
C.
,
Denis
,
J.
,
Lebel
,
L.-P.
,
Denninger
,
M.
,
Blanchard
,
V.
,
Girard
,
A.
, and
Plante
,
J.-S.
,
2020
, “
Multifunctional Remotely Actuated 3-dof Supernumerary Robotic Arm Based on Magnetorheological Clutches and Hydrostatic Transmission Lines
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
2546
2553
.
27.
Véronneau
,
C.
,
Bigué
,
J.-P. L.
,
Lussier-Desbiens
,
A.
, and
Plante
,
J.-S.
,
2018
, “
A High-Bandwidth Back-Drivable Hydrostatic Power Distribution System for Exoskeletons Based on Magnetorheological Clutches
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
2592
2599
.
28.
Viau
,
J.
,
Chouinard
,
P.
,
Bigue
,
J.-P. L.
,
Julió
,
G.
,
Michaud
,
F.
, and
Plante
,
J.-S.
,
2017
, “
Tendon-Driven Manipulator Actuated by Magnetorheological Clutches Exhibiting Both High-Power and Soft Motion Capabilities
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
561
571
.
29.
Najmaei
,
N.
,
Asadian
,
A.
,
Kermani
,
M. R.
, and
Patel
,
R.
,
2015
, “
Magneto-Rheological Actuators for Haptic Devices: Design, Modeling, Control, and Validation of a Prototype Clutch
,”
2015 International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
,
IEEE
, pp.
207
2012
.
30.
Fauteux
,
P.
,
Lauria
,
M.
,
Heintz
,
B.
, and
Michaud
,
F.
,
2010
, “
Dual-differential Rheological Actuator for High-Performance Physical Robotic Interaction
,”
IEEE Trans. Rob.
,
26
(
4
), pp.
607
618
.
31.
Mann
,
M. P.
,
Damti
,
L.
,
Tirosh
,
G.
, and
Zarrouk
,
D.
,
2018
, “
Minimally Actuated Serial Robot
,”
Robotica
,
36
(
3
), pp.
408
426
.
32.
Liu
,
Y.
, and
Xin
,
X.
,
2015
, “
Controllability and Observability of an N-Link Planar Robot With a Single Actuator Having Different Actuator–Sensor Configurations
,”
IEEE. Trans. Automat. Contr.
,
61
(
4
), pp.
1129
1134
.
33.
Zhao
,
J.
,
Xu
,
J.
,
Gao
,
B.
,
Xi
,
N.
,
Cintron
,
F. J.
,
Mutka
,
M. W.
, and
Xiao
,
L.
,
2013
, “
MSU Jumper: A Single-Motor-Actuated Miniature Steerable Jumping Robot
,”
IEEE Trans. Rob.
,
29
(
3
), pp.
602
614
.
34.
Pisetskiy
,
S.
, and
Kermani
,
M.
,
2021
, “
High-Performance Magneto-Rheological Clutches for Direct-Drive Actuation: Design and Development
,”
J. Intell. Mater. Syst. Struct.
,
32
(
20
), pp.
2582
2600
.
35.
Kurillo
,
G.
,
Chen
,
A.
,
Bajcsy
,
R.
, and
Han
,
J. J.
,
2013
, “
Evaluation of Upper Extremity Reachable Workspace Using Kinect Camera
,”
Technol. Health Care
,
21
(
6
), pp.
641
656
.
36.
Piña-Martínez
,
E.
,
Roberts
,
R.
,
Leal-Merlo
,
S.
, and
Rodriguez-Leal
,
E.
,
2018
, “
Vision System-Based Design and Assessment of a Novel Shoulder Joint Mechanism for an Enhanced Workspace Upper Limb Exoskeleton
,”
Appl. Bionics Biomech.
,
2018
, pp.
1
14
.
You do not currently have access to this content.