Abstract

Cooperative continuum robots (CCRs) are composed of multiple coupled continuum arms to cooperatively conduct manipulation tasks. They can highly enhance the performance of individual continuum arms by providing extra stiffness, leading to increased accuracy, payload capacity, and dynamic stability of the robot. This study aimed to investigate the stiffness analysis of tendon-driven supportive-type CCRs (S-CCRs). For this purpose, first, a generalized framework for the dynamic mathematical formulation and numerical solution of S-CCRs was proposed, their dynamic response to complex scenarios was obtained, and the accuracy of the model was experimentally evaluated. Then, the capability of stiffness modulation of S-CCRs was studied. Tendon-driven S-CCRs are potentially capable of changing the stiffness with structural configuration, providing active stiffness control at the design level. Hence, in this study, the effects of the connection point location/angle of the supportive arms to the operative arm, as well as the imposed tendon limitations of the supportive arm on the stiffness of the robot, and consequently on the dynamic payload manipulation, were studied and practical solutions were proposed to develop a simple but effective stiffness control mechanism. This study showed that a typical S-CCR can increase its stiffness, just by a modular connector design up to 84% during manipulation, bringing a novel opportunity for stiffness modulation of CCRs.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Yu
,
Y.
,
Qiu
,
L.
,
Dai
,
S.
,
Li
,
C.
, and
Wang
,
D.
,
2022
, “
Creating a Flexible Continuum Robot Using Origami and Mortise-Tenon Structure
,”
Mech. Mach. Theory
,
176
, p.
104978
.
2.
Bishop
,
C.
,
Russo
,
M.
,
Dong
,
X.
, and
Axinte
,
D.
,
2022
, “
A Novel Underactuated Continuum Robot With Shape Memory Alloy Clutches
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
5339
5350
.
3.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Robot.
,
31
(
6
), pp.
1261
1280
.
4.
Jalali
,
A.
, and
Janabi-Sharifi
,
F.
,
2022
, “
Aerial Continuum Manipulation: A New Platform for Compliant Aerial Manipulation
,”
Front. Rob. AI.
,
9
, p.
Art. No. 903877
.
5.
Janabi-Sharifi
,
F.
,
Jalali
,
A.
, and
Walker
,
I. D.
,
2021
, “
Cosserat Rod-Based Dynamic Modeling of Tendon-Driven Continuum Robots: A Tutorial
,”
IEEE Access
,
9
, pp.
68703
68719
.
6.
Zhang
,
H. J.
,
Lilge
,
S.
,
Chikhaoui
,
M. T.
, and
Burgner-Kahrs
,
J.
,
2022
, “
Cooperative Control of Dual-Arm Concentric Tube Continuum Robots
,”
Proceedings of the MARSS
,
Toronto, ON, Canada
,
July 25–29
, pp.
1
6
.
7.
Goergen
,
Y.
,
Chadda
,
R.
,
Britz
,
R.
,
Scholtes
,
D.
,
Koev
,
N.
,
Motzki
,
P.
,
Werthschützky
,
R.
,
Kupnik
,
M.
, and
Seelecke
,
S.
,
2019
, “
Shape Memory Alloys in Continuum and Soft Robotic Applications
,”
Proceedings of the SMASIS
,
Louisville, KY
,
Sept. 9–11
, p. V001T04A014.
8.
Ji
,
D.
,
Kang
,
T. H.
,
Shim
,
S.
, and
Hong
,
J.
,
2020
, “
Analysis of Twist Deformation in Wire-Driven Continuum Surgical Robot
,”
Int. J. Control, Automat. Syst.
,
18
(
1
), pp.
10
20
.
9.
Bryson
,
C. E.
, and
Rucker
,
D. C.
,
2014
, “
Toward Parallel Continuum Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, pp.
778
785
.
10.
Lotfavar
,
A.
,
Hasanzadeh
,
S.
, and
Janabi-Sharifi
,
F.
,
2018
, “
Cooperative Continuum Robots: Concept, Modeling, and Workspace Analysis
,”
IEEE Rob. Autom. Lett.
,
3
(
1
), pp.
426
433
.
11.
Wen
,
K.
, and
Burgner-Kahrs
,
J.
,
2023
, “
Modeling and Analysis of Tendon-Driven Parallel Continuum Robots Under Constant Curvature and Pseudo-Rigid-Body Assumptions
,”
ASME J. Mech. Rob.
,
15
(
4
), p.
041003
.
12.
Till
,
J.
,
Bryson
,
C. E.
,
Chung
,
S.
,
Orekhov
,
A.
, and
Rucker
,
D. C.
,
2015
, “
Efficient Computation of Multiple Coupled Cosserat Rod Models for Real-Time Simulation and Control of Parallel Continuum Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
5067
5074
.
13.
Böttcher
,
G.
,
Lilge
,
S.
, and
Burgner-Kahrs
,
J.
,
2021
, “
Design of a Reconfigurable Parallel Continuum Robot With Tendon-Actuated Kinematic Chains
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
1272
1279
.
14.
Al-Ibadi
,
A.
,
Nefti-Meziani
,
S.
, and
Davis
,
S.
,
2017
, “
Cooperative Project by Self-Bending Continuum Arms
,”
Proceedings of the International Conference on Automation and Computing (ICAC)
,
Huddersfield, UK
,
Sept. 7–8
, pp.
1
6
.
15.
Anderson
,
P. L.
,
Mahoney
,
A. W.
, and
Webster
,
R. J.
,
2017
, “
Continuum Reconfigurable Parallel Robots for Surgery: Shape Sensing and State Estimation With Uncertainty
,”
IEEE Rob. Autom. Lett.
,
2
(
3
), pp.
1617
1624
.
16.
Mahoney
,
A. W.
,
Anderson
,
P. L.
,
Swaney
,
P. J.
,
Maldonado
,
F.
, and
Webster
,
R. J.
,
2016
, “
Reconfigurable Parallel Continuum Robots for Incisionless Surgery
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robot and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
4330
4336
.
17.
Stevenson
,
W. G.
, and
Soejima
,
K.
,
2007
, “
Catheter Ablation for Ventricular Tachycardia
,”
Circulation
,
115
(
21
), pp.
2750
2760
.
18.
Till
,
J.
,
Aloi
,
V.
, and
Rucker
,
C.
,
2019
, “
Real-Time Dynamics of Soft and Continuum Robots Based on Cosserat Rod Models
,”
Int. J. Rob. Res.
,
38
(
6
), pp.
723
746
.
19.
Girmay
,
T. M.
,
Singh
,
I.
,
Pathak
,
P. M.
,
Amantaray
,
A. K. S.
,
Merzouki
,
R.
, and
Bouamama
,
B. O.
,
2019
, “
Dynamic Modeling of Cooperative Planar Bionic Manipulator
,”
Proceedings of the iNaCoMM 2017: Machines, Mechanisms and Robotics
,
Singapore
, pp.
839
849
.
20.
Jalali
,
A.
, and
Janabi-Sharifi
,
F.
,
2022
, “
Dynamic Modeling of Tendon-Driven Co-Manipulative Continuum Robots
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
1643
1650
.
21.
Oliver-Butler
,
K.
,
Till
,
J.
, and
Rucker
,
C.
,
2019
, “
Continuum Robot Stiffness Under External Loads and Prescribed Tendon Displacements
,”
IEEE Trans. Rob.
,
35
(
2
), pp.
403
419
.
22.
Russo
,
M.
,
Sriratanasak
,
N.
,
Ba
,
W.
,
Dong
,
X.
,
Mohammad
,
A.
, and
Axinte
,
D.
,
2022
, “
Cooperative Continuum Robots: Enhancing Individual Continuum Arms by Reconfiguring Into a Parallel Manipulator
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
1558
1565
.
23.
Zhao
,
Y.
,
Shan
,
Y.
,
Zhang
,
J.
,
Guo
,
K.
,
Qi
,
L.
,
Han
,
L.
, and
Yu
,
H.
,
2019
, “
A Soft Continuum Robot, With a Large Variable-Stiffness Range, Based on Jamming
,”
Bioinspir. Biomim.
,
14
(
6
), p.
066007
.
24.
Mahmoodi
,
M.
,
2014
, “
Structural Dynamic Modeling, Dynamic Stiffness, and Active Vibration Control of Parallel Kinematic Mechanisms With Flexible Linkages
,”
Ph.D. dissertation
,
University of Toronto, ON, Canada
.
25.
Yuan
,
H.
,
Courteille
,
E.
, and
Deblaise
,
D.
,
2015
, “
Static and Dynamic Stiffness Analyses of Cable-Driven Parallel Robots With Non-Negligible Cable Mass and Elasticity
,”
Mech. Mach. Theory
,
85
, pp.
64
81
.
26.
Holsapple
,
R.
,
Venkataraman
,
R.
, and
Doman
,
D.
,
2003
, “
A Modified Simple Shooting Method for Solving Two-Point Boundary Value Problems
,”
Proceedings of the IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 8–15
, pp.
2783
2790
.
You do not currently have access to this content.