Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Endoluminal devices are indispensable in medical procedures in the natural lumina of the body, such as the circulatory system and gastrointestinal tract. In current clinical practice, there is a need for increased control and capabilities of endoluminal devices with less discomfort and risk to the patient. This paper describes the detailed modeling and experimental validation of a magneto-electroactive endoluminal soft (MEESo) robot concept that combines magnetic and electroactive polymer (EAP) actuation to improve the utility of the device. The proposed capsule-like device comprises two permanent magnets with alternating polarity connected by a soft, low-power ionic polymer-metal composite (IPMC) EAP body. A detailed model of the MEESo robot is developed to explore quantitatively the effects of dual magneto-electroactive actuation on the robot’s performance. It is shown that the robot’s gait is enhanced, during the magnetically-driven gait cycle, with IPMC body deformation. The concept is further validated by creating a physical prototype MEESo robot. Experimental results show that the robot’s performance increases up to 68% compared to no IPMC body actuation. These results strongly suggest that integrating EAP into the magnetically-driven system extends the efficacy for traversing tract environments.

References

1.
Nehme
,
F.
,
Goyal
,
H.
,
Perisetti
,
A.
,
Tharian
,
B.
,
Sharma
,
N.
,
Tham
,
T. C.
, and
Chhabra
,
R.
,
2021
, “
The Evolution of Device-Assisted Enteroscopy: From Sonde Enteroscopy to Motorized Spiral Enteroscopy
,”
Front. Med.
,
8
, p.
792668
.
2.
Li
,
Z.
, and
Chiu
,
P. W.-Y.
,
2018
, “
Robotic Endoscopy
,”
Visc. Med.
,
34
(
1
), pp.
45
51
.
3.
Bianchi
,
F.
,
Masaracchia
,
A.
,
Shojaei Barjuei
,
E.
,
Menciassi
,
A.
,
Arezzo
,
A.
,
Koulaouzidis
,
A.
,
Stoyanov
,
D.
,
Dario
,
P.
, and
Ciuti
,
G.
,
2019
, “
Localization Strategies for Robotic Endoscopic Capsules: A Review
,”
Exp. Rev. Med. Dev.
,
16
(
5
), pp.
381
403
.
4.
Verra
,
M.
,
Firrincieli
,
A.
,
Chiurazzi
,
M.
,
Mariani
,
A.
,
Lo Secco
,
G.
,
Forcignanò
,
E.
,
Koulaouzidis
,
A.
,
Menciassi
,
A.
,
Dario
,
P.
,
Ciuti
,
G.
, and
Arezzo
,
A.
,
2020
, “
Robotic-Assisted Colonoscopy Platform With a Magnetically-Actuated Soft-Tethered Capsule
,”
Cancers
,
12
(
9
), p.
2485
.
5.
Kim
,
S. H.
, and
Chun
,
H. J.
,
2021
, “
Capsule Endoscopy: Pitfalls and Approaches to Overcome
,”
Diagnostics
,
11
(
10
), p.
1765
.
6.
Alsunaydih
,
F. N.
, and
Yuce
,
M. R.
,
2021
, “
Next-Generation Ingestible Devices: Sensing, Locomotion and Navigation
,”
Physiol. Meas.
,
42
(
4
), p.
04TR01
.
7.
Song
,
Y.
,
Guo
,
S.
,
Yin
,
X.
,
Zhang
,
L.
,
Hirata
,
H.
,
Ishihara
,
H.
, and
Tamiya
,
T.
,
2018
, “
Performance Evaluation of a Robot-Assisted Catheter Operating System With Haptic Feedback
,”
Biomed. Microdev.
,
20
(
2
), p.
50
.
8.
Zhang
,
L.
,
Gu
,
S.
,
Guo
,
S.
, and
Tamiya
,
T.
,
2021
, “
A Magnetorheological Fluids-Based Robot-Assisted Catheter/Guidewire Surgery System for Endovascular Catheterization
,”
Micromachines
,
12
(
6
), p.
640
.
9.
Kaneko
,
R.
,
Ikeda
,
H.
,
Uezato
,
M.
, and
Chin
,
M.
,
2022
, “
Removal of a Central Venous Catheter Penetrating the Vertebral Artery: A Case Report on Endovascular Treatment for Blunt Cerebrovascular Injury
,”
Surg. Neurol. Int.
,
13
(
84
), pp.
1
5
.
10.
Steiner
,
J. A.
,
Hussain
,
O. A.
,
Pham
,
L. N.
,
Abbott
,
J. J.
, and
Leang
,
K. K.
,
2019
, “
Toward Magneto-Electroactive Endoluminal Soft (MEESo) Robots
,”
ASME Dynamic Systems and Control Conference (DSCC), DSCC2019-9029
,
Park City, UT
, p.
V003T20A002
.
11.
Pham
,
L. N.
,
Steiner
,
J. A.
,
Leang
,
K. K.
, and
Abbott
,
J. J.
,
2020
, “
Soft Endoluminal Robots Propelled by Rotating Magnetic Dipole Fields
,”
IEEE Trans. Med. Robot.
,
2
(
4
), pp.
598
607
.
12.
Huda
,
M. N.
,
Liu
,
P.
,
Saha
,
C.
, and
Yu
,
H.
,
2020
, “
Modelling and Motion Analysis of a Pill-Sized Hybrid Capsule Robot
,”
J. Intell. Robot. Syst.
,
100
(
3
), pp.
753
764
.
13.
Cheung
,
E.
,
Karagozler
,
M. E.
,
Park
,
S.
,
Kim
,
B.
, and
Sitti
,
M.
,
2005
, “
A New Endoscopic Microcapsule Robot Using Beetle Inspired Microfibrillar Adhesives
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Monterey, CA
,
July 24–28
, pp.
551
557
.
14.
Carta
,
R.
,
Sfakiotakis
,
M.
,
Pateromichelakis
,
N.
,
Thoné
,
J.
,
Tsakiris
,
D. P.
, and
Puers
,
R.
,
2011
, “
A Multi-coil Inductive Powering System for an Endoscopic Capsule With Vibratory Actuation
,”
Sens. Actuat. A Phys.
,
172
(
1
), pp.
253
258
.
15.
Pancaldi
,
L.
,
Noseda
,
L.
,
Dolev
,
A.
,
Fanelli
,
A.
,
Ghezzi
,
D.
,
Petruska
,
A. J.
, and
Sakar
,
M. S.
,
2022
, “
Locomotion of Sensor-Integrated Soft Robotic Devices Inside Sub-Millimeter Arteries With Impaired Flow Conditions
,”
Adv. Intell. Syst.
,
4
(
5
), p.
2100247
.
16.
Kim
,
Y.
,
Parada
,
G. A.
,
Liu
,
S.
, and
Zhao
,
X.
,
2019
, “
Ferromagnetic Soft Continuum Robots
,”
Sci. Robot.
,
4
(
33
), p.
eaax7329
.
17.
Thomas
,
T. L.
,
Venkiteswaran
,
V. K.
,
Ananthasuresh
,
G.
, and
Misra
,
S.
,
2020
, “
A Monolithic Compliant Continuum Manipulator: A Proof-of-Concept Study
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061006
.
18.
Jeon
,
S.
,
Hoshiar
,
A. K.
,
Kim
,
K.
,
Lee
,
S.
,
Kim
,
E.
,
Lee
,
S.
,
Kim
,
J.-Y.
, et al.,
2019
, “
A Magnetically Controlled Soft Microrobot Steering a Guidewire in a Three-Dimensional Phantom Vascular Network
,”
Soft Robot.
,
6
(
1
), pp.
54
68
.
19.
Jung
,
E.
,
Nam
,
J.
,
Lee
,
W.
,
Kim
,
J.
, and
Jang
,
G.
,
2021
, “
Crawling Magnetic Robot to Perform a Biopsy in Tubular Environments by Controlling a Magnetic Field
,”
Appl. Sci.
,
11
(
11
), p.
5292
.
20.
Chi
,
M.
,
Zhang
,
J.
,
Liu
,
R.
,
Wang
,
Y.
,
Nie
,
G.
, and
Qian
,
X.
,
2021
, “
Coupled Steering Control of a Low Torsional Torque Capsule Robot in the Intestine
,”
Mechatronics
,
77
, p.
102596
.
21.
Steiner
,
J. A.
,
Pham
,
L. N.
,
Abbott
,
J. J.
, and
Leang
,
K. K.
,
2022
, “
Modeling and Analysis of a Soft Endoluminal Inchworm Robot Propelled by a Rotating Magnetic Dipole Field
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051002
.
22.
Shahinpoor
,
M.
, and
Kim
,
K. J.
,
2004
, “
Ionic Polymer-Metal Composites: IV. Industrial and Medical Applications
,”
Smart Mater. Struct.
,
14
(
1
), p.
197
.
23.
Gu
,
G.-Y.
,
Zhu
,
J.
,
Zhu
,
L.-M.
, and
Zhu
,
X.
,
2017
, “
A Survey on Dielectric Elastomer Actuators for Soft Robots
,”
Bioinsp. Biomim.
,
12
(
1
), p.
011003
.
24.
Tang
,
C.
,
Du
,
B.
,
Jiang
,
S.
,
Wang
,
Z.
,
Liu
,
X.-J.
, and
Zhao
,
H.
,
2023
, “
A Review on High-Frequency Dielectric Elastomer Actuators: Materials, Dynamics, and Applications
,”
Adv. Intell. Syst.
,
6
(
2
), p.
2300047
.
25.
Kellaris
,
N.
,
Gopaluni Venkata
,
V.
,
Smith
,
G. M.
,
Mitchell
,
S. K.
, and
Keplinger
,
C.
,
2018
, “
Peano-HASEL Actuators: Muscle-Mimetic, Electrohydraulic Transducers That Linearly Contract on Activation
,”
Sci. Robot.
,
3
(
14
), p.
eaar3276
.
26.
Johnson
,
B.
,
Naris
,
M.
,
Sundaram
,
V.
,
Volchko
,
A.
,
Ly
,
K.
,
Mitchell
,
S.
,
Acome
,
E.
, et al.,
2023
, “
A Multifunctional Soft Robotic Shape Display With High-Speed Actuation, Sensing, and Control
,”
Nat. Commun.
,
14
(
1
), p.
4516
.
27.
Bar-Cohen
,
Y.
,
Leary
,
S. P.
,
Yavrouian
,
A.
,
Oguro
,
K.
,
Tadokoro
,
S.
,
Harrison
,
J. S.
,
Smith
,
J. G.
, and
Su
,
J.
,
2000
, “Challenges to the Application of IPMC as Actuators of Planetary Mechanisms,”
Smart Structures and Materials 2000: Electroactive Polymer Actuators and Devices (EAPAD)
, Vol.
3987
,
SPIE
,
Newport Beach, CA
, pp.
140
146
.
28.
Hamburg
,
E.
,
Zondaka
,
Z.
,
Punning
,
A.
,
Johanson
,
U.
, and
Aabloo
,
A.
,
2016
, “Some Electrochemical Aspects of Aqueous Ionic Polymer-Composite Actuators,”
Electroactive Polymer Actuators and Devices (EAPAD) 2016
, Vol.
9798
,
SPIE
,
Las Vegas, NV
, pp.
201
209
.
29.
Carrico
,
J. D.
,
Tyler
,
T.
, and
Leang
,
K. K.
,
2018
, “
A Comprehensive Review of Select Smart Polymeric and Gel Actuators for Soft Mechatronics and Robotics Applications: Fundamentals, Freeform Fabrication, and Motion Control
,”
Int. J. Smart Nano Mater.
,
8
(
4
), pp.
144
213
.
30.
Kodaira
,
A.
,
Asaka
,
K.
,
Horiuchi
,
T.
,
Endo
,
G.
,
Nabae
,
H.
, and
Suzumori
,
K.
,
2019
, “
IPMC Monolithic Thin Film Robots Fabricated Through a Multi-layer Casting Process
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
1335
1342
.
31.
Yi
,
X.
,
Chakarvarthy
,
A.
, and
Chen
,
Z.
,
2021
, “
Cooperative Collision Avoidance Control of Servo/IPMC Driven Robotic Fish With Back-Relaxation Effect
,”
IEEE Robot. Autom. Lett.
,
6
(
2
), pp.
1816
1823
.
32.
Li
,
J.
,
Tian
,
A.
,
Sun
,
Y.
,
Feng
,
B.
,
Wang
,
H.
, and
Zhang
,
X.
,
2023
, “
The Development of a Venus Flytrap Inspired Soft Robot Driven by IPMC
,”
J. Bionic Eng.
,
20
(
1
), pp.
406
415
.
33.
Abdulsadda
,
A. T.
, and
Tan
,
X.
,
2012
, “
An Artificial Lateral Line System Using IPMC Sensor Arrays
,”
Int. J. Smart Nano Mater.
,
3
(
3
), pp.
226
242
.
34.
Ming
,
Y.
,
Yang
,
Y.
,
Fu
,
R. P.
,
Lu
,
C.
,
Zhao
,
L.
,
Hu
,
Y. M.
,
Li
,
C.
,
Wu
,
Y. X.
,
Liu
,
H.
, and
Chen
,
W.
,
2018
, “
IPMC Sensor Integrated Smart Glove for Pulse Diagnosis, Braille Recognition, and Human–Computer Interaction
,”
Adv. Mater. Technol.
,
3
(
12
), p.
1800257
.
35.
Nagel
,
W. S.
,
Fakharian
,
O.
,
Aureli
,
M.
, and
Leang
,
K. K.
,
2023
, “
Engineered IPMC Sensors: Modeling, Characterization, and Application Towards Wearable Postural-Tactile Measurement
,”
Smart Mater. Struct.
,
33
(
1
), p.
015035
.
36.
Ali
,
A.
,
Plettenburg
,
D. H.
, and
Breedveld
,
P.
,
2016
, “
Steerable Catheters in Cardiology: Classifying Steerability and Assessing Future Challenges
,”
IEEE Trans. Biomed. Eng.
,
63
(
4
), pp.
679
693
.
37.
Fang
,
B. K.
,
Ju
,
M. S.
, and
Lin
,
C. C. K.
,
2007
, “
A New Approach to Develop Ionic Polymer-Metal Composites (IPMC) Actuator: Fabrication and Control for Active Catheter Systems
,”
Sens. Actuat. A: Phys.
,
137
(
2
), pp.
321
329
.
38.
Ruiz
,
S.
,
Mead
,
B.
,
Palmre
,
V.
,
Kim
,
K. J.
, and
Yim
,
W.
,
2015
, “
A Cylindrical Ionic Polymer-Metal Composite-Based Robotic Catheter Platform: Modeling, Design and Control
,”
Smart Mater. Struct.
,
24
(
4
), p.
015007
.
39.
Yoon
,
W. J.
,
Reinhall
,
P. G.
, and
Seibel
,
E. J.
,
2007
, “
Analysis of Electro-Active Polymer Bending: A Component in a Low Cost Ultrathin Scanning Endoscope
,”
Sens. Actuat. A: Phys.
,
133
(
2
), pp.
506
517
.
40.
Lu
,
C.
,
Zhao
,
L.
,
Hu
,
Y.
, and
Chen
,
W.
,
2018
, “
A Molecular-Regulation Strategy Towards Low-Voltage Driven, Multi Degree of Freedom IPMC Catheters
,”
Chem. Commun.
,
54
(
63
), pp.
8733
8736
.
41.
Abbott
,
J. J.
,
Diller
,
E.
, and
Petruska
,
A. J.
,
2020
, “
Magnetic Methods in Robotics
,”
Annu. Rev. Control Robot. Auton. Syst.
,
3
, pp.
57
90
.
42.
Petruska
,
A. J.
, and
Abbott
,
J. J.
,
2013
, “
Optimal Permanent-Magnet Geometries for Dipole Field Approximation
,”
IEEE Trans. Magn.
,
49
(
2
), pp.
811
819
.
43.
M.
Shahinpoor
, ed.,
2016
,
Ionic Polymer Metal Composites (IPMCs)
,
Smart Materials Series
, Vol.
2
,
The Royal Society of Chemistry
,
Cambridge
.
44.
Nemat-Nasser
,
S.
, and
Li
,
J. Y.
,
2000
, “
Electromechanical Response of Ionic Polymer-Metal Composites
,”
J. Appl. Phys.
,
87
(
7
), pp.
3321
3331
.
45.
Michel
,
O.
,
2004
, “
Webots: Professional Mobile Robot Simulation
,”
J. Adv. Robot. Syst.
,
1
(
1
), pp.
39
42
.
You do not currently have access to this content.