Abstract

The human ball joint is a compact and flexible 3-degree-of-freedom (DOF) composite joint. The ball joints commonly used in robot design lack active driving capability. Ball joints with active drive generally consist of three single-degree-of-freedom joints connected in series, which is a noncompacted structure and easily leads to singular postures. In order to meet the demand for high-performance composite joint modules for service robots, this article designs a flexible biomimetic spherical robot joint with variable stiffness characteristics: the mechanism of muscle parallel antagonistic drive and ligament wrapping constraint is simulated; three parallel branch chains are used to drive three composite degrees-of-freedom; ropes, soft airbags, and series elastic drive gears are used to form a flexible transmission system; the contour of the rope winch has been optimized with the aim of transmission stability; and a pneumatic variable stiffness soft structure has been designed and fabricated. A compliance control algorithm for joints was developed based on the principle of impedance control. The research results indicate that the biomimetic ball-and-socket joint has a compact structure, a wide range of motion and good motion tracking performance, variable stiffness performance, and flexible interaction ability.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Gu
,
D. M.
,
Mu
,
J. C.
, and
Ding
,
Y. S.
,
2013
,
Atlas of Sports Anatomy
,
Peoples Sports Publishing House
,
Beijing
.
2.
Seth
,
A.
,
Dong
,
M.
,
Matias
,
R.
, and
Delp
,
S.
,
2019
, “
Muscle Contributions to Upper-Extremity Movement and Work From a Musculoskeletal Model of the Human Shoulder
,”
Front. Neurorob.
,
13
, p.
90
.
3.
Bai
,
S. L.
, and
Ding
,
W. L.
,
2018
,
Systematic Anatomy
,
Peoples Medical Publishing House
,
Beijing
.
4.
Keshtkar
,
S.
,
Moreno
,
J. A.
,
Kojima
,
H.
, and
Hernández
,
E.
,
2018
, “
Design Concept and Development of a New Spherical Attitude Stabilizer for Small Satellites
,”
IEEE Access
,
6
, pp.
57353
57365
.
5.
Abe
,
K.
,
Tadakuma
,
K.
, and
Tadakuma
,
R.
,
2021
, “
ABENICS: Active Ball Joint Mechanism With Three-DoF Based on Spherical Gear Meshings
,”
IEEE Trans. Rob.
,
37
(
5
), pp.
1806
1825
.
6.
Zhang
,
L. J.
,
Li
,
Y. Q.
, and
Huang
,
Z.
,
2006
, “
On the Kinematics Analysis of a 2-DOF Spherical 5R Parallel Manipulator
,”
China Mech. Eng.
,
4
(
17
), pp.
343
346
.
7.
Li
,
D.
,
2013
, “
Deployable Mechanisms
,”
J. Mech. Eng.
,
13
, pp.
1
7
.
8.
Yang
,
S. K.
,
Chen
,
P.
,
Wang
,
D. Q.
,
Yu
,
Y.
, and
Liu
,
Y. W.
,
2022
, “
Design and Analysis of a 2-DOF Actuator With Variable Stiffness Based on Leaf Springs
,”
J. Bionic Eng.
,
19
(
5
), pp.
1392
1404
.
9.
Sodeyama
,
Y.
,
Nishino
,
T.
,
Namiki
,
Y.
, and
Nakanishi
,
Y.
,
2008
, “
The Designs and Motions of a Shoulder Structure With a Spherical Thorax, Scapulas and Collarbones for Humanoid “Kojiro”
,”
IEEE International Conference on Intelligent Robots and Systems
,
Nice, France
,
Oct. 14
, pp.
1465
1470
. .
10.
Kim
,
Y.-J.
,
2017
, “
Anthropomorphic Low-Inertia High-Stiffness Manipulator for High-Speed Safe Interaction
,”
IEEE Trans. Rob.
,
33
(
6
), pp.
1358
1374
.
11.
Zhong
,
Y.
,
Hu
,
L.
, and
Xu
,
Y.
,
2020
, “
Recent Advances in Design and Actuation of Continuum Robots for Medical Applications
,”
Actuators
,
9
(
4
), p.
142
.
12.
Renda
,
F.
,
Giorelli
,
M.
,
Calisti
,
M.
,
Cianchetti
,
M.
, and
Laschi
,
C.
,
2014
, “
Dynamic Model of a Multibending Soft Robot Arm Driven by Cables
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1109
1122
.
13.
Sun
,
Y.
,
Tang
,
Y.
,
Zheng
,
J.
,
Dong
,
D.
, and
Bai
,
L.
,
2023
, “
Optimal Variable Stiffness Control and its Applications in Bionic Robotic Joints: A Review
,”
J. Bionic Eng.
,
20
(
2
), pp.
417
435
.
14.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems: Human Robot Interaction and Cooperative Robots
,
Pittsburgh, PA
,
Aug. 5–9
.
15.
Fasel
,
L.
,
Gerig
,
N.
,
Cattin
,
P. C.
, and
Rauter
,
G.
,
2022
, “
Control Evaluation of Antagonistic Series Elastic Actuation for a Robotic Endoscope Joint
,”
J. Bionic Eng.
,
19
(
4
), pp.
965
974
.
16.
Zhang
,
X. L.
,
Huang
,
L. Q.
, and
Niu
,
H.
,
2022
, “
Structural Design and Stiffness Matching Control of Bionic Variable Stiffness Joint for Human–Robot Collaboration
,”
Biomim. Intell. Rob.
,
3
(
1
), p.
100084
.
17.
Liu
,
K.
,
Li
,
L.
,
Li
,
W.
,
Gu
,
J.
, and
Sun
,
Z.
,
2023
, “
Compliant Control of Lower Limb Rehabilitation Exoskeleton Robot Based on Flexible Transmission
,”
J. Bionic Eng.
,
20
(
3
), pp.
1021
1035
.
18.
Zhu
,
Y.
,
Li
,
R.
, and
Song
,
Z.
,
2023
, “
Bionic Muscle Control With Adaptive Stiffness for Bionic Parallel Mechanism
,”
J. Bionic Eng.
,
20
(
2
), pp.
598
611
.
19.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
20.
Laschi
,
C.
, and
Cianchetti
,
M.
,
2014
, “
Soft Robotics: new Perspectives for Robot Bodyware and Control
,”
Front. Bioeng. Biotechnol.
,
2
(
7
), p.
3
.
21.
Majidi
,
C.
,
2014
, “
Soft Robotics: A Perspective—Current Trends and Prospects for the Future
,”
Soft Rob.
,
1
(
1
), pp.
5
11
.
22.
Coyle
,
S.
,
Majidi
,
C.
,
LeDuc
,
P.
, and
Hsia
,
K. J.
,
2018
, “
Bio-Inspired Soft Robotics: Material Selection, Actuation, and Design
,”
Extreme Mech. Lett.
,
22
, pp.
51
59
.
23.
Best
,
C. M.
,
Rupert
,
L.
, and
Killpack
,
M. D.
,
2020
, “
Comparing Model-Based Control Methods for Simultaneous Stiffness and Position Control of Inflatable Soft Robots
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
470
493
.
24.
Shen
,
Z.
,
Zhong
,
H.
,
Xu
,
E. C.
, and
Zhang
,
R. Z.
,
2022
, “
An Underwater Robotic Manipulator With Soft Bladders and Compact Depth-Independent Actuation
,”
Soft Rob.
,
7
(
5
), pp.
535
549
.
25.
Chen
,
X.
,
Zhu
,
W.
,
Liang
,
W.
,
Lang
,
Y.
, and
Ren
,
Q.
,
2022
, “
Control of Antagonistic McKibben Muscles via a Bio-Inspired Approach
,”
J. Bionic Eng.
,
19
(
6
), pp.
1771
1789
.
26.
Wang
,
L. L.
, and
Wang
,
Z.
,
2020
, “
Mechanoreception for Soft Robots via Intuitive Body Cues
,”
Soft Rob.
,
7
(
2
), pp.
198
217
.
27.
Guo
,
J.
,
Low
,
J.-H.
,
Liu
,
J.
,
Li
,
Y.
,
Liu
,
Z.
,
Yeow
,
C.-H.
,
2022
, “
Three-Dimensional Printable Ball Joints With Variable Stiffness for Robotic Applications Based on Soft Pneumatic Elastomer Actuators
,”
Polymers
,
14
(
17
), p.
3542
.
28.
Yang
,
Y.
,
Chen
,
Y.
,
Li
,
Y.
, and
Chen
,
M. Z.
,
2016
, “
3D Printing of Variable Stiffness Hyper-Redundant Robotic arm
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
.
29.
Sozer
,
C.
,
Sahu
,
S. K.
,
Paterno
,
L.
, and
Menciassi
,
A.
,
2023
, “
Robotic Modules for a Continuum Manipulator With Variable Stiffness Joints
,”
IEEE Rob. Autom. Lett.
,
8
(
8
), pp.
4745
4752
.
30.
Yang
,
B.
,
Baines
,
R.
,
Shah
,
D.
, and
Patiballa
,
S.
,
2021
, “
Reprogrammable Soft Actuation and Shape-Shifting via Tensile Jamming
,”
Sci. Adv.
,
7
(
40
).
31.
Yang
,
Y.
,
Chen
,
Y.
,
Li
,
Y.
,
Chen
,
M. Z. Q.
, and
Wei
,
Y.
,
2017
, “
Bioinspired Robotic Fingers Based on Pneumatic Actuator and 3D Printing of Smart Material
,”
Soft Rob.
,
4
(
2
), pp.
147
162
.
32.
Sui
,
D. B.
,
Zhao
,
S. K.
,
Wang
,
T. S.
,
Liu
,
Y. B.
,
Zhu
,
Y. H.
, and
Zhao
,
J.
,
2022
, “
Design of a Bio-Inspired Extensible Continuum Manipulator With Variable Stiffness
,”
J. Bionic Eng.
33.
Li
,
H.
,
Yao
,
J.
,
Liu
,
C.
,
Zhou
,
P.
,
Xu
,
Y.
, and
Zhao
,
Y.
,
2020
, “
A Bioinspired Soft Swallowing Robot Based on Compliant Guiding Structure
,”
Soft Rob.
,
7
(
4
), pp.
491
499
.
34.
Shahid
,
Z.
,
Glatman
,
A. L.
, and
Ryu
,
S. C.
,
2019
, “
Design of a Soft Composite Finger With Adjustable Joint Stiffness
,”
Soft Rob.
,
6
(
6
), pp.
722
732
.
35.
Zhang
,
X.
,
Lu
,
H.
,
Fang
,
Y.
, and
Li
,
B.
,
2016
, “
Design of a Compliant Robotic Arm Based on Series Elastic Actuator
,”
Robot
,
38
(
4
), pp.
385
394
.
You do not currently have access to this content.