Abstract

The ship-borne Stewart platform can compensate for the six-degrees-of-freedom (DOFs) motion generated by the ship, which improves the reliability and safety of offshore operations and increases the executable window period. The heavy and off-center load of the gangway significantly influences the high-precision compensation control of the platform. Besides, the gangway assembled on the platform vibrates easily due to its low natural frequency that requires high dynamic performance of the compensating. To deal with the problem mentioned, the modal space control strategy is introduced to fully consider the inertia characteristics. First, based on Kane's method, the complete dynamic model considering the ship's motion and actuator inertia is established. Then, the modal space proportional and derivative (PD) controller (MSPDC) and the modal space sliding mode controller (MSSMC) are designed based on the modal theory. Finally, simulations are carried out to show the advantages of the proposed model and the advantages of proposed controllers in compensation accuracy and anti-interference ability. Furthermore, the significant compensation rate (SCR) is proposed to evaluate the six-DOFs compensation accuracy. Compared with the PD controller with gravity compensation (PDCGC), the position SCR of MSSMC is increased from 95.37% to 99.28%, and the angle SCR increased from 85.57% to 99.65%.

References

1.
Woodacre
,
J. K.
,
Bauer
,
R. J.
, and
Irani
,
R. A.
,
2015
, “
A Review of Vertical Motion Heave Compensation Systems
,”
Ocean Eng.
,
104
, pp.
140
154
.
2.
Cerda Salzmann
,
D. J.
,
2010
,
Ampelmann: Development of the Access System for Offshore Wind Turbines
,
Delft University of Technology
,
Delft, Netherlands
.
3.
Cai
,
Y. F.
,
Zheng
,
S. T.
,
Liu
,
W. T.
,
Qu
,
Z. Y.
, and
Han
,
J. W.
,
2021
, “
Model Analysis and Modified Control Method of Ship-Mounted Stewart Platforms for Wave Compensation
,”
IEEE Access
,
9
, pp.
4505
4517
.
4.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
386
.
5.
Pradipta
,
J.
, and
Sawodny
,
O.
,
2016
, “
Actuator Constrained Motion Cueing Algorithm for a Redundantly Actuated Stewart Platform
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
6
), p.
061007
.
6.
Zhang
,
R.
,
2017
, “
The Study of 6-DOF Motion Simulation Platform for Passenger Ship
,”
5th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering (ICMMCCE)
,
Chongqing, China
,
July 24–25
, pp.
489
493
.
7.
Chiew
,
Y. S.
,
Abdul
,
J. M. K.
, and
Hussein
,
M.
,
2008
, “
Kinematic Modeling of Driving Simulator Motion Platform
,”
2nd IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications
,
Cyberjaya, Malaysia
,
July 12–13
, IEEE, p.
30
.
8.
Zhao
,
J. X.
,
Li
,
C.
,
Ren
,
H.
,
Hao
,
M.
,
Zhang
,
L. C.
, and
Tang
,
P. F.
,
2020
, “
Evolution and Current Applications of Robot-Assisted Fracture Reduction: A Comprehensive Review
,”
Ann. Biomed. Eng.
,
48
(
1
), pp.
203
224
.
9.
Dwarakanath
,
T. A.
,
Dasgupta
,
B.
, and
Mruthyunjaya
,
T. S.
,
2001
, “
Design and Development of a Stewart Platform Based Force-Torque Sensor
,”
Mechatronics
,
11
(
7
), pp.
793
809
.
10.
Afroun
,
M.
,
Dequidt
,
A.
, and
Vermeiren
,
L.
,
2012
, “
Revisiting the Inverse Dynamics of the Gough-Stewart Platform Manipulator With Special Emphasis on Universal-Prismatic-Spherical Leg and Internal Singularity
,”
Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci.
,
226
(
10
), pp.
2422
2439
.
11.
Hajimirzaalian
,
H.
,
Moosavi
,
H.
, and
Massah
,
M.
,
2010
, “
Dynamics Analysis and Simulation of Parallel Robot Stewart Platform
,”
2010 the 2nd International Conference on Computer and Automation Engineering (ICCAE)
,
Singapore
,
Feb. 26–28
, pp.
472
477
.
12.
Mukherjee
,
P.
,
Dasgupta
,
B.
, and
Mallik
,
A. K.
,
2007
, “
Dynamic Stability Index and Vibration Analysis of a Flexible Stewart Platform
,”
J. Sound Vib.
,
307
(
3–5
), pp.
495
512
.
13.
Cai
,
Y. F.
,
Zheng
,
S. T.
,
Liu
,
W. T.
,
Qu
,
Z. Y.
,
Zhu
,
J.
, and
Han
,
J. W.
,
2021
, “
Sliding-Mode Control of Ship-Mounted Stewart Platforms for Wave Compensation Using Velocity Feedforward
,”
Ocean Eng.
,
236
, p.
109477
.
14.
Huang
,
Y.
,
Pool
,
D. M.
,
Stroosma
,
O.
,
Chu
,
Q. P.
, and
Mulder
,
M.
,
2016
, “
A Review of Control Schemes for Hydraulic Stewart Platform Flight Simulator Motion Systems
,”
AIAA Modeling and Simulation Technologies Conference
,
San Diego, CA
,
Jan. 4–8
, p.
14
.
15.
Lafrnejani
,
A. S.
,
Masouleh
,
M. T.
, and
Kalhor
,
A.
,
2018
, “
Trajectory Tracking Control of a Pneumatically Actuated 6-DOF Gough-Stewart Parallel Robot Using Backstepping-Sliding Mode Controller and Geometry-Based Quasi Forward Kinematic Method
,”
Robot. Comput. Integr. Manuf.
,
54
, pp.
96
114
.
16.
Pi
,
Y. J.
, and
Wang
,
X. Y.
,
2011
, “
Trajectory Tracking Control of a 6-DOF Hydraulic Parallel Robot Manipulator With Uncertain Load Disturbances
,”
Control Eng. Pract.
,
19
(
2
), pp.
185
193
.
17.
Grewal
,
K. S.
,
Dixon
,
R.
, and
Pearson
,
J.
,
2012
, “
LQG Controller Design Applied to a Pneumatic Stewart-Gough Platform
,”
Int. J. Autom. Comput.
,
9
(
1
), pp.
45
53
.
18.
Yang
,
C. F.
,
Huang
,
Q. T.
, and
Han
,
J. W.
,
2012
, “
Computed Force and Velocity Control for Spatial Multi-DOF Electro-Hydraulic Parallel Manipulator
,”
Mechatronics
,
22
(
6
), pp.
715
722
.
19.
Chen
,
S. H.
, and
Fu
,
L. C.
,
2015
, “
Observer-Based Backstepping Control of a 6-dof Parallel Hydraulic Manipulator
,”
Control Eng. Pract.
,
36
, pp.
100
112
.
20.
Wu
,
Y.
,
Zhang
,
L. Z.
,
Xu
,
T. R.
, and
Tang
,
T.
,
2022
, “
Enhanced Observer Control of a Cubic Stewart Platform With Image Sensor Measurement
,”
IEEE Photon. J.
,
14
(
5
), p.
6853508
.
21.
Cai
,
Y. F.
,
Zheng
,
S. T.
,
Liu
,
W. T.
,
Qu
,
Z. Y.
,
Zhu
,
J. Y.
, and
Han
,
J. W.
,
2021
, “
Adaptive Robust Dual-Loop Control Scheme of Ship-Mounted Stewart Platforms for Wave Compensation
,”
Mech. Mach. Theory
,
164
, p.
104406
.
22.
Ngo
,
Q. H.
, and
Nguyen
,
N. P.
,
2017
, “
Sliding Mode Control Design With the Time Varying Parameters of the Sliding Surface of an Offshore Container Crane
,”
2017 11th Asian Control Conference (ASCC)
,
Gold Coast, Australia
,
Dec. 17–20
, pp.
2669
2674
.
23.
Wei
,
Y.
,
Wang
,
A.
, and
Han
,
H.
,
2019
, “
Ocean Wave Active Compensation Analysis of Inverse Kinematics for Hybrid Boarding System Based on Fuzzy Algorithm
,”
Ocean Eng.
,
182
, pp.
577
583
.
24.
Huang
,
T.
,
Shan
,
L.
,
Li
,
J.
,
Yu
,
Z.
, and
Lin
,
C.
,
2019
, “
Closed-Loop RBF-PID Control Method for Position and Attitude Control of Stewart Platform
,”
38th Chinese Control Conference (CCC)
,
Guangzhou, China
,
July 17–30
, IEEE, pp.
3096
3101
.
25.
Ono
,
T.
,
Eto
,
R.
,
Yamakawa
,
J.
, and
Murakami
,
H.
,
2019
, “
Control Simulations for a Stewart Platform Compensator Mounted on Moving Base
,”
ASME 2019 International Mechanical Engineering Congress and Exposition
,
Salt Lake City, UT
,
Nov. 11–14
.
26.
Liu
,
J. G.
, and
Chen
,
X. Y.
,
2022
, “
Adaptive Control Based on Neural Network and Beetle Antennae Search Algorithm for an Active Heave Compensation System
,”
Int. J. Control Autom. Syst.
,
20
(
2
), pp.
515
525
.
27.
Yang
,
X. L.
,
Wu
,
H. T.
,
Li
,
Y.
, and
Chen
,
B.
,
2017
, “
Dynamic Isotropic Design and Decentralized Active Control of a Six-Axis Vibration Isolator via Stewart Platform
,”
Mech. Mach. Theory
,
117
, pp.
244
252
.
28.
Yang
,
C. F.
,
Qu
,
Z. Y.
, and
Han
,
J. W.
,
2014
, “
Decoupled-Space Control and Experimental Evaluation of Spatial Electrohydraulic Robotic Manipulators Using Singular Value Decomposition Algorithms
,”
IEEE Trans. Ind. Electron.
,
61
(
7
), pp.
3427
3438
.
29.
McInroy
,
J. E.
,
O'Brien
,
J. F.
, and
Allais
,
A. A.
,
2015
, “
Designing Micromanipulation Systems for Decoupled Dynamics and Control
,”
IEEE ASME Trans. Mechatron.
,
20
(
2
), pp.
553
563
.
30.
He
,
J. F.
,
Jiang
,
H. Z.
, and
Tong
,
Z. Z.
,
2017
, “
Modal Control of a Hydraulically Driven Redundant Actuated Fully Parallel Mechanism
,”
J. Vib. Control
,
23
(
10
), pp.
1585
1592
.
31.
Yang
,
X. L.
,
Wu
,
H. T.
,
Chen
,
B.
,
Kang
,
S. Z.
, and
Cheng
,
S. L.
,
2019
, “
Dynamic Modeling and Decoupled Control of a Flexible Stewart Platform for Vibration Isolation
,”
J. Sound Vib.
,
439
, pp.
398
412
.
32.
Zhao
,
J.
,
Wang
,
Z.
,
Yang
,
T.
,
Xu
,
J.
,
Ma
,
Z.
, and
Wang
,
C.
,
2020
, “
Design of a Novel Modal Space Sliding Mode Controller for Electro-Hydraulic Driven Multi-Dimensional Force Loading Parallel Mechanism
,”
ISA Trans.
,
99
, pp.
374
386
.
33.
Leng
,
J.
,
Xu
,
C.
,
Li
,
M.
,
Du
,
H.
, and
Liu
,
S.
,
2021
, “
Control Strategy for Performing Predictions for a Semi-Active Compensation System
,”
Ocean Eng.
,
239
, p.
109816
.
34.
Shi
,
M.
,
Guo
,
S.
,
Jiang
,
L.
, and
Huang
,
Z.
,
2019
, “
Active-Passive Combined Control System in Crane Type for Heave Compensation
,”
IEEE Access
,
7
, pp.
159960
159970
.
35.
Liu
,
Z.
,
Zhang
,
Y.
,
Yu
,
X.
,
Chen
,
J.
,
Wang
,
Z.
,
Wang
,
D.
,
Duan
,
M.
,
Mu
,
X.
, and
Huang
,
L.
,
2020
, “
Study on the Control Strategies of Offshore Drilling Crown-Block Heave Compensation System With Compound Cylinders
,”
IEEE Access
,
8
, pp.
149270
149281
.
36.
Qiang
,
H.
,
Jin
,
S.
,
Feng
,
X.
,
Xue
,
D.
, and
Zhang
,
L.
,
2020
, “
Model Predictive Control of a Shipborne Hydraulic Parallel Stabilized Platform Based on Ship Motion Prediction
,”
IEEE Access
,
8
, pp.
181880
181892
.
37.
Tanaka
,
Y.
,
2018
, “
Active Vibration Compensator on Moving Vessel by Hydraulic Parallel Mechanism
,”
Int. J. Hydromechatronics
,
1
(
3
), pp.
350
359
.
38.
Lie
,
K.
,
2017
,
Inverse Dynamics Control for the Ampelmann System
,
Technische Universiteit Delft
,
Delft, Netherlands
.
You do not currently have access to this content.