Abstract

This article addresses the path synthesis of RCCC (revolute-cylindrical-cylindrical-cylindrical) linkages, a problem that has not received due attention in the literature. Compared with planar and spherical four-bar linkages, a RCCC linkage has many more design parameters, which lead to a complex formulation of the path synthesis problem and, consequently, to a quite challenging system of algebraic equations. In this article, the problem is solved with a novel formulation of path synthesis for visiting a number of prescribed positions. This is achieved by means of an alternative coordinate system, which allows point coordinates to be expressed with the aid of two vectors fixed to the same body. By this means, the rotation matrix used to represent the coupler link attitude is obviated. The synthesis equations are then formulated in a simple form. Our formulation confirms that path synthesis admits exact solutions for up to nine prescribed positions, which proves a landmark claim submitted by Burmester. Examples are included to demonstrate the path synthesis procedure with the method thus developed.

References

1.
Subbian
,
T.
,
Flugrad
,
D. R., Jr.
,
1991
, “
Four-Bar Path Generation Synthesis by a Continuation Method
,”
ASME. J. Mech. Des.
,
113
(
1
), pp.
63
69
.
2.
Ma
,
O.
, and
Angeles
,
J.
,
1988
, “
Performance Evaluation of Path-Generating Planar, Spherical and Spatial Four-Bar Linkages
,”
Mech. Mach. Theory
,
23
(
4
), pp.
257
268
.
3.
McDonald
,
M.
, and
Agrawal
,
S. K.
,
2010
, “
Design of a Bio-Inspired Spherical Four-Bar Mechanism for Flapping-Wing Micro Air-Vehicle Applications
,”
ASME J. Mech. Rob.
,
2
(
2
), p.
021012
.
4.
Jamalov
,
R. I.
,
Litvin
,
F. L.
, and
Roth
,
B.
,
1984
, “
Analysis and Design of RCCC Linkages
,”
Mech. Mach. Theory.
,
19
(
4–5
), pp.
397
407
.
5.
Marble
,
S. D.
, and
Pennock
,
G. R.
,
2000
, “
Algebraic-Geometric Properties of the Coupler Curves of the RCCC Spatial Four-Bar Mechanism
,”
Mech. Mach. Theory
,
35
(
5
), pp.
675
693
.
6.
Innocenti
,
C.
,
1995
, “
Polynomial Solution of the Spatial Burmester Problem
,”
ASME. J. Mech. Des.
,
117
(
1
), pp.
64
68
.
7.
Larochelle
,
P. M.
,
1995
, “
On the Design of Spatial 4C Mechanisms for Rigid-Body Guidance Through 4 Positions
,”
Proceedings of 1995 ASME Design Engineering Technical Conferences
,
Boston, MA
, pp.
825
832
.
8.
Bai
,
S.
, and
Angeles
,
J.
,
2012
, “
A Robust Solution of the Spatial Burmester Problem
,”
ASME. J. Mech. Rob.
,
4
(
3
), p.
031003
.
9.
Murray
,
A. P.
, and
McCarthy
,
J. M.
,
1994
, “
Five Position Synthesis of Spatial CC Dyads
,”
ASME Mechanisms Conference
,
Minneapolis, MN
, pp.
143
152
.
10.
Bai
,
S.
, and
Angeles
,
J.
,
2015
, “
Synthesis of RCCC Linkages to Visit Four Given Poses
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031004
.
11.
Thomas
,
F.
, and
Pérez-Gracia
,
A.
,
2018
, “A New Insight Into the Coupler Curves of the RCCC Four-bar Linkage,”
Computational Kinematics
,
Zeghloul
,
S.
,
Romdhane
,
L.
, and
Laribi
,
M. A.
, eds.,
Springer International Publishing
,
Cham
, pp.
552
559
.
12.
Reinholtz
,
C. F.
,
Sandor
,
G. N.
, and
Duffy
,
J.
,
1986
, “
Branching Analysis of Spherical RRRR and Spatial RCCC Mechanisms
,”
J. Mech. Trans. Auto. Des.
,
108
(
4
), pp.
481
486
.
13.
Huang
,
C.
, and
Lai
,
C.
,
2012
, “
Spatial Generalizations of Planar Point-Angle and Path Generation Problems
,”
ASME. J. Mech. Rob.
,
4
(
3
), p.
031010
.
14.
Tsai
,
L.-W.
, and
Roth
,
B.
,
1973
, “
Incompletely Specified Displacements: Geometry and Spatial Linkage Synthesis
,”
ASME J. Eng. Indust.
,
95
(
2
), pp.
603
611
.
15.
Tsai
,
L. W.
, and
Roth
,
B.
,
1972
, “
Design of Dyads With Helical, Cylindrical, Spherical, Revolute and Prismatic Joints
,”
Mech. Mach. Theory
,
7
(
1
), pp.
85
102
.
16.
Lee
,
W.-T.
,
Cosme
,
J.
, and
Russell
,
K.
,
2017
, “
On RCCC Linkage Motion Generation With Defect Elimination for an Indefinite Number of Precision Positions
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
064501
.
17.
Han
,
J.
, and
Cao
,
Y.
,
2019
, “
Analytical Synthesis Methodology of RCCC Linkages for the Specified Four Poses
,”
Mech. Mach. Theory
,
133
, pp.
531
544
.
18.
Sun
,
J. W.
,
Mu
,
D. Q.
, and
Chu
,
J. K.
,
2012
, “
Fourier Series Method for Path Generation of RCCC Mechanism
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
226
(
3
), pp.
816
827
.
19.
Figliolini
,
G.
,
Rea
,
P.
, and
Angeles
,
J.
,
2015
, “
The Synthesis of the Axodes of RCCC Linkages
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021011
.
20.
Liu
,
W.
,
Sun
,
J.
,
Zhang
,
B.
, and
Chu
,
J.
,
2018
, “
A Novel Synthesis Method for Nonperiodic Function Generation of an RCCC Mechanism
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
034502
.
21.
Chu
,
J.
, and
Sun
,
J.
,
2009
, “
Research on RCCC Mechanism Path Generation by Using Numerical Atlas Method
,”
Zhongguo Jixie Gongcheng/China Mech. Eng.
,
20
(
9
), pp.
1024
1028
.
22.
Lee
,
W.-T.
,
Cosme
,
J.
, and
Russell
,
K.
,
2018
, “
On the Evaluation of a General Model for Optimum Revolute Cylindrical Cylindrical Cylindrical Path Generation
,”
Trans. Canadian Soc. Mech. Eng.
,
42
(
2
), pp.
156
163
.
23.
Plecnik
,
M.
, and
Fearing
,
R.
,
2017
, “
Finding Only Finite Roots to Large Kinematic Synthesis Systems
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021005
.
24.
Baskar
,
A.
, and
Bandyopadhyay
,
S.
,
2019
, “
An Algorithm to Compute the Finite Roots of Large Systems of Polynomial Equations Arising in Kinematic Synthesis
,”
Mech. Mach. Theory.
,
133
, pp.
493
513
.
25.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
77
(
2
), pp.
215
221
.
26.
Yang
,
A. T.
,
1963
, “
Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms
,”
Ph.D. thesis
,
Columbia University
,
New York
.
27.
Yang
,
A.
, and
Freudenstein
,
F.
,
1964
, “
Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms
,”
J. Appl. Mech.
,
31
(
2
), pp.
300
307
.
28.
Pennestrì
,
E.
, and
Stefanelli
,
R.
,
2007
, “
Linear Algebra and Numerical Algorithms Using Dual Numbers
,”
Multibody Syst. Dyn.
,
18
(
3
), pp.
323
344
.
29.
Bai
,
S.
,
Wang
,
D.
, and
Dong
,
H.
,
2016
, “
A Unified Formulation for Dimensional Synthesis of Stephenson Linkages
,”
ASME. J. Mech. Rob.
,
8
(
4
), p.
041009
.
30.
Bai
,
S.
,
2021
, “
Algebraic Coupler Curve of Spherical Four-Bar Linkages and Its Applications
,”
Mech. Mach. Theory
,
158
, p.
104218
.
31.
Allgower
,
E. L.
,
Georg
,
K.
, and
Miranda
,
R.
,
1992
, “
The Method of Resultants for Computing Real Solutions of Polynomial Systems
,”
SIAM J. Numer. Anal.
,
29
(
3
), pp.
831
844
.
32.
Nolle
,
H.
,
1975
, “
Linkage Coupler Curve Synthesis: A Historical Review III. Spatial Synthesis and Optimization
,”
Mech. Mach. Theory
,
10
(
1
), pp.
41
55
.
33.
Noferini
,
V.
, and
Townsend
,
A.
,
2016
, “
Numerical Instability of Resultant Methods for Multidimensional Rootfinding
,”
SIAM J. Numer. Anal.
,
54
(
2
), pp.
719
743
.
34.
Lipkin
,
H.
, and
Duffy
,
J.
,
1985
,
A Vector Analysis of Robot Manipulators
,
John Wiley & Sons
,
New York
, pp.
175
241
.
35.
Gutierrez
,
J.
, and
Recio
,
T.
,
1998
, “
Advances on the Simplification of Sine-Cosine Equations
,”
J. Symb. Comput.
,
26
(
1
), pp.
31
70
.
You do not currently have access to this content.