Abstract

This article focuses on a method to relocate the robotic fingertips on the surface of the object when the fingertips instantaneously hold the object under precision grasp. Precision grasp involves holding the object using fingertips. Finger gaiting involves repositioning the fingertips on the surface of the object and then manipulation of the object. During repositioning, one contact point leaves the object surface and recontacts at the other point. A metric is defined on the set of feasible grasp configurations to limit deviation from force closure during repositioning of the fingertips. Then, a manipulability-based metric is described to search for the optimal goal grasp states on the object’s surface. The manipulability-based metric is used to search the grasp state to relocate the contacts, such that the range of object motion is increased.

References

1.
Jacobsen
,
S.
,
Iversen
,
E.
,
Knutti
,
D.
,
Johnson
,
R.
, and
Biggers
,
K.
,
1986
, “
Design of the Utah/mit Dextrous Hand
,”
Proceedings of 1986 IEEE International Conference on Robotics and Automation
, Vol.
3
,
San Francisco, CA
,
Apr. 7–10
,
IEEE
, pp.
1520
1532
.
2.
Loucks
,
C.
,
Johnson
,
V.
,
Boissiere
,
P.
,
Starr
,
G.
, and
Steele
,
J.
, 1987, “
Modeling and Control of the Stanford/JPL Hand
,”
Proceedings of 1987 IEEE International Conference on Robotics and Automation, Vol. 4
,
Raleigh, NC
,
Mar. 31–Apr. 3
, IEEE, pp.
573
578
.
3.
Bekey
,
G. A.
,
Tomovic
,
R.
, and
Zeljkovic
,
I.
,
1990
, “
Control Architecture for the Belgrade/USC Hand
,”
Dextrous Robot Hands
,
Springer
,
New York
, pp.
136
149
.
4.
Venkataraman
,
S.
, and
Arbib
,
M.
,
1985
, “
A Distributed Control Model for Dextrous Hands
,”
IFAC Proc. Vol.
,
18
(
16
), pp.
187
192
.
5.
Kawasaki
,
H.
,
Komatsu
,
T.
, and
Uchiyama
,
K.
,
2002
, “
Dexterous Anthropomorphic Robot Hand With Distributed Tactile Sensor: Gifu Hand II
,”
IEEE/ASME Trans. Mechatron.
,
7
(
3
), pp.
296
303
.
6.
Lee
,
D.-H.
,
Park
,
J.-H.
,
Park
,
S.-W.
,
Baeg
,
M.-H.
, and
Bae
,
J.-H.
,
2016
, “
Kitech-Hand: A Highly Dexterous and Modularized Robotic Hand
,”
IEEE/ASME Trans. Mechatron.
,
22
(
2
), pp.
876
887
.
7.
Grossard
,
M.
,
Martin
,
J.
, and
da Cruz Pacheco
,
G. F.
,
2014
, “
Control-Oriented Design and Robust Decentralized Control of the Cea Dexterous Robot Hand
,”
IEEE/ASME Trans. Mechatron.
,
20
(
4
), pp.
1809
1821
.
8.
Devine
,
S.
,
Rafferty
,
K.
, and
Ferguson
,
S.
,
2016
, “
Real Time Robotic Arm Control Using Hand Gestures With Multiple End Effectors
,”
2016 UKACC 11th International Conference on Control (CONTROL)
,
Belfast, UK
,
Aug. 31–Sept. 2
,
IEEE
, pp.
1
5
.
9.
Yang
,
H.
,
Wei
,
G.
,
Ren
,
L.
,
Qian
,
Z.
,
Wang
,
K.
,
Xiu
,
H.
, and
Liang
,
W.
,
2021
, “
An Affordable Linkage-and-Tendon Hybrid-Driven Anthropomorphic Robotic Hand–MCR-Hand II
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
024502
.
10.
Yang
,
H.
,
Wei
,
G.
, and
Ren
,
L.
,
2019
, “
Design and Development of a Linkage-Tendon Hybrid Driven Anthropomorphic Robotic Hand
,”
International Conference on Intelligent Robotics and Applications
,
Shenyang, China
,
Aug. 8–11
,
Springer
, pp.
117
128
.
11.
Yang
,
H.
,
Wei
,
G.
,
Ren
,
L.
,
Qian
,
Z.
,
Wang
,
K.
,
Xiu
,
H.
, and
Liang
,
W.
,
2021
, “
A Low-Cost Linkage-Spring-Sendon-Integrated Compliant Anthropomorphic Robotic Hand: MCR-Hand III
,”
Mech. Mach. Theory.
,
158
, p.
104210
.
12.
Nishimura
,
T.
,
Fujihira
,
Y.
, and
Watanabe
,
T.
,
2017
, “
Microgripper-Embedded Fluid Fingertip-Enhancing Positioning and Holding Abilities for Versatile Grasping
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061017
.
13.
Ospina
,
D.
, and
Ramirez-Serrano
,
A.
,
2020
, “
Sensorless In-Hand Manipulation by an Underactuated Robot Hand
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051009
.
14.
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2014
, “
Linkage-Based Analysis and Optimization of an Underactuated Planar Manipulator for In-Hand Manipulation
,”
ASME J. Mech. Rob.
,
6
(
1
), p.
011002
.
15.
Govindan
,
N.
, and
Thondiyath
,
A.
,
2019
, “
Design and Analysis of a Multimodal Grasper Having Shape Conformity and Within-Hand Manipulation With Adjustable Contact Forces
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051012
.
16.
Ma
,
R. R.
,
Rojas
,
N.
, and
Dollar
,
A. M.
,
2016
, “
Spherical Hands: Toward Underactuated, In-Hand Manipulation Invariant to Object Size and Grasp Location
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061021
.
17.
Dai
,
J. S.
, and
Wang
,
D.
,
2007
, “
Geometric Analysis and Synthesis of the Metamorphic Robotic Hand
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1191
1197
.
18.
Dai
,
J. S.
,
Wang
,
D.
, and
Cui
,
L.
,
2009
, “
Orientation and Workspace Analysis of the Multifingered Metamorphic Hand-Mmetahand
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
942
947
.
19.
Cui
,
L.
, and
Dai
,
J. S.
,
2011
, “
Posture, Workspace, and Manipulability of the Metamorphic Multifingered Hand With an Articulated Palm
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021001
.
20.
Cui
,
L.
, and
Dai
,
J. S.
,
2012
, “
Reciprocity-Based Singular Value Decomposition for Inverse Kinematic Analysis of the Metamorphic Multifingered Hand
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
034502
.
21.
Wei
,
G.
,
Dai
,
J. S.
,
Wang
,
S.
, and
Luo
,
H.
,
2011
, “
Kinematic Analysis and Prototype of a Metamorphic Anthropomorphic Hand With a Reconfigurable Palm
,”
Int. J. Humanoid Rob.
,
8
(
3
), pp.
459
479
.
22.
Gao
,
Z.
,
Wei
,
G.
, and
Dai
,
J. S.
,
2015
, “
Inverse Kinematics and Workspace Analysis of the Metamorphic Hand
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
229
(
5
), pp.
965
975
.
23.
Sun
,
W.
,
Kong
,
J.
,
Wang
,
X.
, and
Liu
,
H.
,
2018
, “
Innovative Design Method of the Metamorphic Hand
,”
Int. J. Adv. Rob. Syst.
,
15
(
1
), p.
1729881417754154
.
24.
Li
,
Z.
, and
Sastry
,
S. S.
,
1988
, “
Task-oriented Optimal Grasping by Multifingered Robot Hands
,”
IEEE J. Rob. Auto.
,
4
(
1
), pp.
32
44
.
25.
Ferrari
,
C.
, and
Canny
,
J. F.
,
1992
, “
Planning Optimal Grasps.
,”
IEEE International Conference on Robotics and Automation
, Vol.
3
,
Nice, France
,
May 12–14
, pp.
2290
2295
.
26.
Roa
,
M. A.
, and
Suárez
,
R.
,
2009
, “
Computation of Independent Contact Regions for Grasping 3-d Objects
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
839
850
.
27.
Charusta
,
K.
,
Krug
,
R.
,
Dimitrov
,
D.
, and
Iliev
,
B.
,
2012
, “
Independent Contact Regions Based on a Patch Contact Model
,”
2012 IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
May 14–18
,
IEEE
, pp.
4162
4169
.
28.
Jeong
,
H.
, and
Cheong
,
J.
,
2012
, “
Independent Contact Region (ICR) Based In-Hand Motion Planning Algorithm With Guaranteed Grasp Quality Margin
,”
2012 IEEE International Conference on Automation Science and Engineering (CASE)
,
Seoul, South Korea
,
Aug. 20–24
,
IEEE
, pp.
1089
1094
.
29.
Ponce
,
J.
, and
Faverjon
,
B.
,
1995
, “
On Computing Three-Finger Force-Closure Grasps of Polygonal Objects
,”
IEEE. Trans. Rob. Autom.
,
11
(
6
), pp.
868
881
.
30.
Paljug
,
E.
,
Yun
,
X.
, and
Kumar
,
V.
,
1994
, “
Control of Rolling Contacts in Multi-Arm Manipulation
,”
IEEE. Trans. Rob. Autom.
,
10
(
4
), pp.
441
452
.
31.
Bicchi
,
A.
, and
Sorrentino
,
R.
,
1995
, “
Dexterous Manipulation Through Rolling
,”
Proceedings of 1995 IEEE International Conference on Robotics and Automation
, Vol.
1
,
Nagoya, Japan
,
May 21–27
,
IEEE
, pp.
452
457
.
32.
Han
,
L.
,
Guan
,
Y.-S.
,
Li
,
Z.
,
Shi
,
Q.
, and
Trinkle
,
J. C.
,
1997
, “
Dextrous Manipulation With Rolling Contacts
,”
Proceedings of International Conference on Robotics and Automation
, Vol.
2
,
Albuquerque, NM
,
Apr. 20–25
,
IEEE
, pp.
992
997
.
33.
Han
,
L.
, and
Trinkle
,
J. C.
,
1998
, “
Dextrous Manipulation by Rolling and Finger Gaiting
,”
Proceedings of 1998 IEEE International Conference on Robotics and Automation
, Vol.
1
,
Leuven, Belgium
,
May 16–21
,
IEEE
, pp.
730
735
.
34.
Cole
,
A. A.
,
Hsu
,
P.
, and
Sastry
,
S. S.
,
1989
, “
Dynamic Regrasping by Coordinated Control of Sliding for a Multifingered Hand
,”
Proceedings of International Conference on Robotics and Automation
,
Scottsdale, AZ
,
May 14–19
, pp.
781
786
.
35.
Shi
,
J.
,
Woodruff
,
J. Z.
,
Umbanhowar
,
P. B.
, and
Lynch
,
K. M.
,
2017
, “
Dynamic In-Hand Sliding Manipulation
,”
IEEE Trans. Rob.
,
33
(
4
), pp.
778
795
.
36.
Spiers
,
A. J.
,
Calli
,
B.
, and
Dollar
,
A. M.
,
2018
, “
Variable-Friction Finger Surfaces to Enable Within-Hand Manipulation Via Gripping and Sliding
,”
IEEE Rob. Auto. Lett.
,
3
(
4
), pp.
4116
4123
.
37.
Chavan-Dafle
,
N.
, and
Rodriguez
,
A.
,
2018
, “
Stable Prehensile Pushing: In-Hand Manipulation With Alternating Sticking Contacts
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
IEEE
, pp.
254
261
.
38.
Sundaralingam
,
B.
, and
Hermans
,
T.
,
2019
, “
Relaxed-Rigidity Constraints: Kinematic Trajectory Optimization and Collision Avoidance for In-Grasp Manipulation
,”
Auto. Rob.
,
43
(
2
), pp.
469
483
.
39.
Rojas
,
N.
, and
Dollar
,
A. M.
,
2016
, “
Classification and Kinematic Equivalents of Contact Types for Fingertip-Based Robot Hand Manipulation
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041014
.
40.
Cherif
,
M.
, and
Gupta
,
K. K.
,
1999
, “
Planning Quasi-Static Fingertip Manipulations for Reconfiguring Objects
,”
IEEE. Trans. Rob. Autom.
,
15
(
5
), pp.
837
848
.
41.
Zheng
,
Y.
, and
Qian
,
W.-H.
,
2005
, “
Coping With the Grasping Uncertainties in Force-Closure Analysis
,”
Int. J. Rob. Res.
,
24
(
4
), pp.
311
327
.
42.
Dafle
,
N. C.
,
Rodriguez
,
A.
, and
Paolini et al
,
R.
,
2014
, “
Regrasping Objects Using Extrinsic Dexterity
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 5
,
IEEE
, pp.
2560
2560
.
43.
Leveroni
,
S.
, and
Salisbury
,
K.
,
1996
, “
Reorienting Objects With a Robot Hand Using Grasp Gaits
,”
Robotics Research
,
G.
Giralt
, and
G.
Hirzinger
, eds.,
Springer
, pp.
39
51
.
44.
Xu
,
J.
,
Koo
,
T.-K. J.
, and
Li
,
Z.
,
2010
, “
Sampling-Based Finger Gaits Planning for Multifingered Robotic Hand
,”
Auto. Rob.
,
28
(
4
), pp.
385
402
.
45.
Fan
,
Y.
,
Gao
,
W.
,
Chen
,
W.
, and
Tomizuka
,
M.
,
2017
, “
Real-Time Finger Gaits Planning for Dexterous Manipulation
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
12765
12772
.
46.
Fan
,
Y.
,
Tang
,
T.
,
Lin
,
H.-C.
,
Zhao
,
Y.
, and
Tomizuka
,
M.
,
2017
, “
Real-Time Robust Finger Gaits Planning Under Object Shape and Dynamics Uncertainties
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, Canada
,
Sept. 24–28
,
IEEE
, pp.
1267
1273
.
47.
Sundaralingam
,
B.
, and
Hermans
,
T.
,
2018
, “
Geometric In-Hand Regrasp Planning: Alternating Optimization of Finger Gaits and In-Grasp Manipulation
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–26
,
IEEE
, pp.
231
238
.
48.
Feix
,
T.
,
Pawlik
,
R.
,
Schmiedmayer
,
H.-B.
,
Romero
,
J.
, and
Kragic
,
D.
,
2009
, “
A Comprehensive Grasp Taxonomy
,”
Robotics, Science and Systems: Workshop on Understanding the Human Hand for Advancing Robotic Manipulation
, Vol.
2
,
Seattle, WA
,
June 28
, pp.
2
3
.
49.
Zhang
,
X.-Y.
,
Nakamura
,
Y.
,
Goda
,
K.
, and
Yoshimoto
,
K.
,
1994
, “
Robustness of Power Grasp
,”
Proceedings of the 1994 IEEE International Conference on Robotics and Automation
,
San Diego, CA
,
IEEE
, pp.
2828
2835
.
50.
Liu
,
Y.-H.
,
1999
, “
Qualitative Test and Force Optimization of 3-d Frictional Form-Closure Grasps Using Linear Programming
,”
IEEE. Trans. Rob. Autom.
,
15
(
1
), pp.
163
173
.
51.
Zhu
,
X.
, and
Wang
,
J.
,
2003
, “
Synthesis of Force-Closure Grasps on 3-d Objects Based on the Q Distance
,”
IEEE. Trans. Rob. Autom.
,
19
(
4
), pp.
669
679
.
52.
Broumi
,
S.
,
Bakal
,
A.
,
Talea
,
M.
,
Smarandache
,
F.
, and
Vladareanu
,
L.
,
2016
, “
Applying Dijkstra Algorithm for Solving Neutrosophic Shortest Path Problem
,”
2016 International Conference on Advanced Mechatronic Systems (ICAMechS)
,
Melbourne, Australia
,
Nov. 30–Dec. 3
,
IEEE
, pp.
412
416
.
53.
Yoshikawa
,
T.
, and
Nagai
,
K.
,
1991
, “
Manipulating and Grasping Forces in Manipulation by Multifingered Robot Hands
,”
IEEE. Trans. Rob. Autom.
,
7
(
1
), pp.
67
77
.
54.
Chaudhury
,
A. N.
, and
Ghosal
,
A.
,
2018
, “
Workspace of Multifingered Hands Using Monte Carlo Method
,”
J. Mech. Rob.
,
10
(
4
), p.
041003
.
55.
Chaudhury
,
A. N.
, and
Ghosal
,
A.
,
2019
, “Workspace of Multi-Fingered Robotic Hands Using Monte Carlo Method,”
Machines, Mechanism and Robotics
,
D. N.
Badodkar
, and
T. A.
Dwarakanath
, eds.,
Springer
, pp.
317
327
.
You do not currently have access to this content.