Abstract

The paper deals with the elastostatic modeling of a multi-link flexible manipulator based on the two-dimensional (2D) dual-triangle tensegrity mechanism and its nonlinear behavior under external loading. The main attention is paid to the static equilibriums and the manipulator stiffness behavior under the loading for the arbitrary initial configuration. It was proved that there is a quasi-buckling phenomenon for this manipulator while the external loading is increasing. In the neighborhood of these configurations, the manipulator behavior was analyzed using the enhanced virtual joint method (VJM). A relevant simulation study confirmed the obtained theoretical results.

References

1.
Yang
,
Y.
, and
Zhang
,
W.
,
2015
, “
An Elephant-Trunk Manipulator With Twisting Flexional Rods
,”
2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Zhuhai, China
,
Dec. 6–9
, pp.
13
18
.
2.
Howell
,
L. L.
,
2013
, “Compliant Mechanisms,”
21st Century Kinematics
,
Springer London
,
London
, pp.
189
216
.
3.
Rolf
,
M.
, and
Steil
,
J. J.
,
2012
, “
Constant Curvature Continuum Kinematics as Fast Approximate Model for the Bionic Handling Assistant
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura, Algarve, Portugal
,
Oct. 7–12
, pp.
3440
3446
.
4.
Wang
,
M. Y.
, and
Chen
,
S.
,
2009
, “
Compliant Mechanism Optimization: Analysis and Design With Intrinsic Characteristic Stiffness
,”
Mech. Based Des. Struct. Mach.
,
37
(
2
), pp.
183
200
.
5.
Albu-Schaffer
,
A.
,
Eiberger
,
O.
,
Grebenstein
,
M.
,
Haddadin
,
S.
,
Ott
,
C.
,
Wimbock
,
T.
,
Wolf
,
S.
, and
Hirzinger
,
G.
,
2008
, “
Soft Robotics
,”
IEEE Robotics & Automation Magazine
,
15
(
3
), pp.
20
30
.
6.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
.
7.
Skelton
,
R. E.
, and
De Oliveira
,
M. C.
,
2009
,
Tensegrity Systems
,
Springer
,
New York
.
8.
Moored
,
K. W.
,
Kemp
,
T. H.
,
Houle
,
N. E.
, and
Bart-Smith
,
H.
,
2011
, “
Analytical Predictions, Optimization, and Design of a Tensegrity-Based Artificial Pectoral fin
,”
Int. J. Solids Struct.
,
48
(
22
), pp.
3142
3159
.
9.
Chen
,
L.-H.
,
Kim
,
K.
,
Tang
,
E.
,
Li
,
K.
,
House
,
R.
,
Zhu
,
E. L.
,
Fountain
,
K.
,
Agogino
,
A. M.
,
Agogino
,
A.
,
Sunspiral
,
V.
, and
Jung
,
E.
,
2017
, “
Soft Spherical Tensegrity Robot Design Using Rod-Centered Actuation and Control
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
025001
.
10.
Liu
,
S.
,
Li
,
Q.
,
Wang
,
P.
, and
Guo
,
F.
,
2020
, “
Kinematic and Static Analysis of a Novel Tensegrity Robot
,”
Mech. Mach. Theory
,
149
, p.
103788
.
11.
Zha
,
J.
,
Wu
,
X.
,
Kroeger
,
J.
,
Perez
,
N.
, and
Mueller
,
M. W.
,
2020
, “
A Collision-Resilient Aerial Vehicle With Icosahedron Tensegrity Structure
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vilamoura, Algarve, Portugal
,
Oct. 24– Jan. 24
, pp.
1407
1412
.
12.
Kuzdeuov
,
A.
,
Rubagotti
,
M.
, and
Varol
,
H. A.
,
2020
, “
Neural Network Augmented Sensor Fusion for Pose Estimation of Tensegrity Manipulators
,”
IEEE Sensors J.
,
20
(
7
), pp.
3655
3666
.
13.
Shintake
,
J.
,
Zappetti
,
D.
,
Peter
,
T.
,
Ikemoto
,
Y.
, and
Floreano
,
D.
,
2020
, “
Bio-inspired Tensegrity Fish Robot
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
May 31–Aug. 31
, pp.
2887
2892
.
14.
Vasquez
,
R. E.
,
Crane
,
C. D.
, III
, and
Correa
,
J. C.
,
2014
, “
Analysis of a Planar Tensegrity Mechanism for Ocean Wave Energy Harvesting
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031015
.
15.
Muralidharan
,
V.
, and
Wenger
,
P.
,
2021
, “
Optimal Design and Comparative Study of Two Antagonistically Actuated Tensegrity Joints
,”
Mech. Mach. Theory
,
159
, p.
104249
.
16.
Pham
,
N. K.
, and
Peraza Hernandez
,
E. A.
,
2021
, “
Modeling and Design Exploration of a Tensegrity-Based Twisting Wing
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031019
.
17.
Chen
,
Y.
,
Feng
,
J.
, and
Wu
,
Y.
,
2012
, “
Novel Form-Finding of Tensegrity Structures Using Ant Colony Systems
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031001
.
18.
Ehara
,
S.
, and
Kanno
,
Y.
,
2010
, “
Topology Design of Tensegrity Structures via Mixed Integer Programming
,”
Int. J. Solids Struct.
,
47
(
5
), pp.
571
579
.
19.
Koohestani
,
K.
,
2012
, “
Form-Finding of Tensegrity Structures via Genetic Algorithm
,”
Int. J. Solids Struct.
,
49
(
5
), pp.
739
747
.
20.
Wang
,
Y.
,
Xu
,
X.
, and
Luo
,
Y.
,
2021
, “
Form-Finding of Tensegrity Structures via Rank Minimization of Force Density Matrix
,”
Eng. Struct.
,
227
, p.
111419
.
21.
Zhang
,
L.-Y.
,
Zhu
,
S.-X.
,
Li
,
S.-X.
, and
Xu
,
G.-K.
,
2018
, “
Analytical Form-Finding of Tensegrities Using Determinant of Force-Density Matrix
,”
Compos. Struct.
,
189
, pp.
87
98
.
22.
Chen
,
Y.
,
Sun
,
Q.
, and
Feng
,
J.
,
2018
, “
Improved Form-Finding of Tensegrity Structures Using Blocks of Symmetry-Adapted Force Density Matrix
,”
J. Struct. Eng.
,
144
(
10
), p.
04018174
.
23.
Nouri Rahmat Abadi
,
B.
,
Mehdi Shekarforoush
,
S. M.
,
Mahzoon
,
M.
, and
Farid
,
M.
,
2014
, “
Kinematic, Stiffness, and Dynamic Analyses of a Compliant Tensegrity Mechanism
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041001
.
24.
Wang
,
R.
,
Goyal
,
R.
,
Chakravorty
,
S.
, and
Skelton
,
R. E.
,
2020
, “
Model and Data Based Approaches to the Control of Tensegrity Robots
,”
IEEE Robot. Autom. Lett.
,
5
(
3
), pp.
3846
3853
.
25.
Zhang
,
M.
,
Geng
,
X.
,
Bruce
,
J.
,
Caluwaerts
,
K.
,
Vespignani
,
M.
,
SunSpiral
,
V.
,
Abbeel
,
P.
, and
Levine
,
S.
,
2017
, “
Deep Reinforcement Learning for Tensegrity Robot Locomotion
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
634
641
.
26.
Luo
,
J.
,
Edmunds
,
R.
,
Rice
,
F.
, and
Agogino
,
A. M.
,
2018
, “
Tensegrity Robot Locomotion Under Limited Sensory Inputs via Deep Reinforcement Learning
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–25
, pp.
6260
6267
.
27.
Cera
,
B.
, and
Agogino
,
A. M.
,
2018
, “
Multi-Cable Rolling Locomotion With Spherical Tensegrities Using Model Predictive Control and Deep Learning
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
1
9
.
28.
Savin
,
S.
,
Balakhnov
,
O.
, and
Klimchik
,
A.
,
2020
, “
Convex Optimization-Based Stiffness Control for Tensegrity Robotic Structures
,”
Proceedings of the 28th Mediterranean Conference on Control and Automation (MED)
,
Saint-Raphaël, France
,
Sept. 15–18
, pp.
990
995
.
29.
Zhakatayev
,
A.
,
Abdikadirova
,
B.
,
Sarmonov
,
S.
, and
Varol
,
H. A.
,
2020
, “
Dynamics of Tensegrity Robots With Negative Stiffness Elements
,”
IEEE Access
,
8
, pp.
187114
187125
.
30.
Schorr
,
P.
,
Zentner
,
L.
,
Zimmermann
,
K.
, and
Böhm
,
V.
,
2021
, “
Jumping Locomotion System Based on a Multistable Tensegrity Structure
,”
Mech. Syst. Signal Process
,
152
, p.
107384
.
31.
Melancon
,
D.
,
Gorissen
,
B.
,
García-Mora
,
C. J.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2021
, “
Multistable Inflatable Origami Structures at the Metre Scale
,”
Nature
,
592
(
7855
), pp.
545
550
.
32.
Sareh
,
P.
,
Chermprayong
,
P.
,
Emmanuelli
,
M.
,
Nadeem
,
H.
, and
Kovac
,
M.
,
2018
, “
Rotorigami: A Rotary Origami Protective System for Robotic Rotorcraft
,”
Sci. Rob.
,
3
(
22
), p.
eaah5228
.
33.
Dureisseix
,
D.
,
2012
, “
An Overview of Mechanisms and Patterns With Origami
,”
Int. J. Space Struct.
,
27
(
1
), pp.
1
14
.
34.
Rohmer
,
J. L.
,
Peraza Hernandez
,
E. A.
,
Skelton
,
R. E.
,
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2015
, “
An Experimental and Numerical Study of Shape Memory Alloy-Based Tensegrity/Origami Structures
,”
Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition, Volume 9: Mechanics of Solids, Structures and Fluids
,
Houston, TX
,
Nov. 13–19
, p.
V009T12A064
.
35.
Klimchik
,
A.
,
Pashkevich
,
A.
, and
Chablat
,
D.
,
2019
, “
Fundamentals of Manipulator Stiffness Modeling Using Matrix Structural Analysis
,”
Mech. Mach. Theory
,
133
, pp.
365
394
.
36.
Deblaise
,
D.
,
Hernot
,
X.
, and
Maurine
,
P.
,
2006
, “
A Systematic Analytical Method for PKM Stiffness Matrix Calculation
,”
IEEE International Conference on Robotics and Automation (ICRA 2006)
,
Orlando, FL
,
May 15–19
,
IEEE
, pp.
4213
4219
.
37.
Klimchik
,
A.
,
Chablat
,
D.
, and
Pashkevich
,
A.
,
2014
, “
Stiffness Modeling for Perfect and Non-Perfect Parallel Manipulators Under Internal and External Loadings
,”
Mech. Mach. Theory
,
79
, pp.
1
28
.
38.
Pashkevich
,
A.
,
Klimchik
,
A.
, and
Chablat
,
D.
,
2011
, “
Enhanced Stiffness Modeling of Manipulators With Passive Joints
,”
Mech. Mach. Theory
,
46
(
5
), pp.
662
679
.
39.
Quennouelle
,
C.
, and
Gosselin
,
C. M.
,
2008
, “Stiffness Matrix of Compliant Parallel Mechanisms,”
Advances in Robot Kinematics: Analysis and Design
,
Springer
, pp.
331
341
.
40.
Liu
,
H.
,
Huang
,
T.
,
Chetwynd
,
D. G.
, and
Kecskeméthy
,
A.
,
2017
, “
Stiffness Modeling of Parallel Mechanisms at Limb and Joint/Link Levels
,”
IEEE Trans. Rob.
,
33
(
3
), pp.
734
741
.
41.
Klimchik
,
A.
,
Chablat
,
D.
, and
Pashkevich
,
A.
,
2015
, “
Static Stability of Manipulator Configuration: Influence of the External Loading
,”
Eur. J. Mech. A. Solids
,
51
, pp.
193
203
.
42.
Carricato
,
M.
, and
Merlet
,
J.
,
2013
, “
Stability Analysis of Underconstrained Cable-Driven Parallel Robots
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
288
296
.
43.
Arsenault
,
M.
, and
Gosselin
,
C. M.
,
2006
, “
Kinematic, Static and Dynamic Analysis of a Planar 2-DOF Tensegrity Mechanism
,”
Mech. Mach. Theory
,
41
(
9
), pp.
1072
1089
.
44.
Furet
,
M.
,
Lettl
,
M.
, and
Wenger
,
P.
,
2018
, “
Kinematic Analysis of Planar Tensegrity 2-X Manipulators
,”
International Symposium on Advances in Robot Kinematics
,
Ljubljana, Slovenia
,
Dec. 6–10
,
Springer
, pp.
153
160
.
45.
Wenger
,
P.
, and
Chablat
,
D.
,
2019
, “
Kinetostatic Analysis and Solution Classification of a Class of Planar Tensegrity Mechanisms
,”
Robotica
,
37
(
7
), pp.
1214
1224
.
46.
Moon
,
Y.
,
Crane
,
C. D.
, III
, and
Roberts
,
R. G.
,
2012
, “
Position and Force Analysis of a Planar Tensegrity-Based Compliant Mechanism
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
011004
.
47.
Ilewicz
,
G.
, and
Harlecki
,
A.
,
2020
, “
Multi-Objective Optimization and Linear Buckling of Serial Chain of a Medical Robot Tool for Soft Tissue Surgery
,”
Int. J. Rob. Autom.
,
9
(
1
), p.
17
.
48.
Wang
,
H.
, and
Yamamoto
,
A.
,
2017
, “
Analyses and Solutions for the Buckling of Thin and Flexible Electrostatic Inchworm Climbing Robots
,”
IEEE Trans. Rob.
,
33
(
4
), pp.
889
900
.
49.
Yamada
,
A.
,
Mameda
,
H.
,
Mochiyama
,
H.
, and
Fujimoto
,
H.
,
2010
, “
A Compact Jumping Robot Utilizing Snap-Through Buckling With Bend and Twist
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Oct. 18–22
, pp.
389
394
.
50.
Zhao
,
W.
,
Pashkevich
,
A.
,
Klimchik
,
A.
, and
Chablat
,
D.
,
2020
, “
Stiffness Analysis of a New Tensegrity Mechanism Based on Planar Dual-Triangles
,”
Proceedings of the 17th International Conference on Informatics in Control, Automation and Robotics
, Vol.
1
, pp.
402
411
.
51.
Zhao
,
W.
,
Pashkevich
,
A.
,
Klimchik
,
A.
, and
Chablat
,
D.
,
2020
, “
The Stability and Stiffness Analysis of a Dual-Triangle Planar Rotation Mechanism
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 10: 44th Mechanisms and Robotics Conference (MR)
, p.
V010T10A064
.
52.
Chen
,
S.-F.
, and
Kao
,
I.
,
2000
, “
Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers
,”
Int. J. Rob. Res.
,
19
(
9
), pp.
835
847
.
You do not currently have access to this content.