Abstract

This paper presents kinetostatic models of planar compliant mechanisms with multinary rigid links, multinary joints, sliders, and multiple loops based on the chained beam constraint model. The focus is on modeling of several building blocks of the beam type compliant mechanisms to aid in their design. The modeling approaches are based on the loop-closure equations and the static equilibrium conditions. Models of the multinary rigid links, multinary joints, and sliders are presented. As a result, the kinetostatic models of the compliant mechanisms can be systematically formulated by using these building blocks. Several mechanisms constructed by the building blocks are modeled and verified by finite element analyses. A case study is provided to demonstrate the application of the developed models. These models pave the way for versatile applications of the chained beam constraint model for the design and analysis of beam type planar compliant mechanisms.

References

1.
Bisshopp
,
K. E.
, and
Drucker
,
D. C.
,
1945
, “
Large Deflection of Cantilever Beams
,”
Quart. Appl. Math.
,
3
(
3
), pp.
272
275
.
2.
Mattiasson
,
K.
,
1981
, “
Numerical Results From Large Deflection Beam and Frame Problems Analysed by Means of Elliptic Integrals
,”
Int. J. Numer. Methods Eng.
,
17
(
1
), pp.
145
153
.
3.
Howell
,
L. L.
,
1991
, “
The Design and Analysis of Large-Deflection Members in Compliant Mechanisms
,”
Ph.D. thesis
,
Purdue University
,
West Lafayette, IN
.
4.
Howell
,
L. L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
5.
Awtar
,
S.
,
Shimotsu
,
K.
, and
Sen
,
S.
,
2010
, “
Elastic Averaging in Flexure Mechanisms: A Three-Beam Parallelogram Flexure Case Study
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041006
.
6.
Chen
,
G.
, and
Ma
,
F.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
.
7.
Ma
,
F.
, and
Chen
,
G.
,
2016
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
.
8.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2013
, “
A Kinetostatic Formulation for Load-Flow Visualization in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021007
.
9.
Chen
,
G.
,
Han
,
Q.
, and
Jin
,
K.
,
2020
, “
A Fully Compliant Tristable Mechanism Employing Both Tensural and Compresural Segments
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011003
.
10.
Furet
,
M.
, and
Wenger
,
P.
,
2019
, “
Kinetostatic Analysis and Actuation Strategy of a Planar Tensegrity 2-X Manipulator
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
060904
.
11.
Hao
,
G.
, and
Li
,
H.
,
2016
, “
Extended Static Modeling and Analysis of Compliant Compound Parallelogram Mechanisms Considering the Initial Internal Axial Force
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041008
.
12.
Nuttall
,
A. J. G.
, and
Breteler
,
A. J. K.
,
2003
, “
Compliance Effects in a Parallel Jaw Gripper
,”
Mech. Mach. Theory
,
38
(
12
), pp.
1509
1522
.
13.
Nah
,
S. K.
, and
Zhong
,
Z. W.
,
2007
, “
A Microgripper Using Piezoelectric Actuation for Micro-Object Manipulation
,”
Sens. Actuators, A
,
133
(
1
), pp.
218
224
.
14.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
Hoboken, NJ
.
15.
Zhang
,
D.
,
Zhang
,
Z.
,
Gao
,
Q.
,
Xu
,
D.
, and
Liu
,
S.
,
2015
, “
Development of a Monolithic Compliant SPCA-Driven Micro-Gripper
,”
Mechatronics
,
25
, pp.
37
43
.
16.
Zhu
,
S.-K.
, and
Yu
,
Y.-Q.
,
2017
, “
Pseudo-Rigid-Body Model for the Flexural Beam With an Inflection Point in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031005
.
17.
Zhang
,
X.
, and
Xu
,
Q.
,
2019
, “
Design and Testing of a Novel 2-DOF Compound Constant-Force Parallel Gripper
,”
Precis. Eng.
,
56
, pp.
53
61
.
18.
Venkiteswaran
,
V. K.
,
Turkkan
,
O. A.
, and
Su
,
H.-J.
,
2017
, “
Speeding Up Topology Optimization of Compliant Mechanisms With a Pseudorigid-Body Model
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041007
.
19.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
20.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081009
.
21.
Ma
,
F.
, and
Chen
,
G.
,
2017
, “
Bi-BCM: A Closed-Form Solution for Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
014501
.
22.
Kong
,
K.
,
Chen
,
G.
, and
Hao
,
G.
,
2019
, “
Kinetostatic Modeling and Optimization of a Novel Horizontal-Displacement Compliant Mechanism
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
064502
.
23.
Han
,
Q.
,
Huang
,
X.
, and
Shao
,
X.
,
2017
, “
Nonlinear Kinetostatic Modeling of Double-Tensural Fully–Compliant Bistable Mechanisms
,”
Int. J. Non Linear Mech.
,
93
, pp.
41
46
.
24.
Ma
,
F.
, and
Chen
,
G.
,
2020
, “
Kinetostatic Modeling and Characterization of Compliant Mechanisms Containing Flexible Beams of Variable Effective Length
,”
Mech. Mach. Theory
,
147
, p.
103770
.
25.
Sandor
,
G. N.
, and
Erdman
,
A. G.
,
1984
,
Advanced Mechanism Design: Analysis and Systhesis
,
Prentice-Hall, Inc.
,
New Jersey
.
26.
Hao
,
G.
,
2015
, “
Extended Nonlinear Analytical Models of Compliant Parallelogram Mechanisms: Third-Order Models
,”
Trans. Can. Soc. Mech. Eng.
,
39
(
1
), pp.
71
83
.
27.
Chang
,
P.-L.
,
Chi
,
I.-T.
,
Tran
,
N. D. K.
, and
Wang
,
D.-A.
,
2020
, “
Design and Modeling of a Compliant Gripper With Parallel Movement of Jaws
,”
Mech. Mach. Theory
,
152
, p.
103942
.
28.
Ma
,
F.
, and
Chen
,
G.
,
2019
, “
Influence of Non-Ideal Fixed-End Constraints on Kinetostatic Behaviors of Compliant Bistable Mechanisms
,”
Mech. Mach. Theory
,
133
, pp.
267
277
.
29.
Chen
,
G.
,
Ma
,
F.
,
Hao
,
G.
, and
Zhu
,
W.
,
2019
, “
Modeling Large Deflections of Initially Curved Beams in Compliant Mechanisms Using Chained Beam Constraint Model
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011002
.
30.
Ngo
,
T.-H.
,
Tran
,
H.-V.
,
Nguyen
,
T.-A.
,
Dao
,
T.-P.
, and
Wang
,
D.-A.
,
2018
, “
Design and Kinetostatic Modeling of a Compliant Gripper for Grasp and Autonomous Release of Objects
,”
Adv. Rob.
,
32
(
14
), pp.
717
735
.
31.
Chi
,
I.-T.
,
Ngo
,
T.-H.
,
Chang
,
P.-L.
,
Tran
,
N. D. K.
, and
Wang
,
D.-A.
,
2019
, “
Design of a Bistable Mechanism With B-Spline Profiled Beam for Versatile Switching Forces
,”
Sens. Actuators, A
,
294
, pp.
173
184
.
32.
Tran
,
H.-V.
,
Ngo
,
T.-H.
,
Chang
,
P.-L.
,
Chi
,
I.-T.
,
Tran
,
N. D. K.
, and
Wang
,
D.-A.
,
2019
, “
A Threshold Gyroscope Based on a Bistable Mechanism
,”
Mechatronics
,
63
, p.
102280
.
You do not currently have access to this content.