Abstract

This paper presents the design and experimental validation of two force regulation mechanisms (FRMs) containing a translational cam and a rotational cam, respectively. With the friction-considered profile identification method (FCPIM) to define the cam and through the squeezing between the cam and the spring-supported slider, the FRMs can passively output the desired force over the designed displacement. Under the premise of that the friction coefficient can be accurately obtained, the friction-considered design principle will be significant for the realization of FRMs in actual applications since it is no longer necessary to achieve high accuracy by pursuing the frictionless condition. Hence, the conventional materials and mechanical parts can be directly used to assemble the FRMs without sacrificing the force regulating accuracy. We are highly interested in the actual experimental behavior of the proposed FRMs under the friction-considered condition. Then, prototypes of the two FRMs capable of outputting multiple types of forces including in zero-stiffness, positive and negative stiffness are specially designed, fabricated, and tested quasi-statically. The experimental results verify the correctness of FCPIM since they agree with the design objective well. Meanwhile, the effectiveness of the FCPIM is proved as the errors of the experimental results considering friction is much lower than those ignoring friction. The experiments also show that the noise phenomenon in the testing curves that may affect the judgment of test accuracy can be highly degraded by using more stable and controllable loading tools, which is helpful for future research.

References

1.
Wang
,
P.
, and
Xu
,
Q.
,
2018
, “
Design and Modeling of Constant-Force Mechanisms: A Survey
,”
Mech. Mach. Theory
,
119
, pp.
1
21
. 10.1016/j.mechmachtheory.2017.08.017
2.
Hyun
,
D.
,
Yang
,
H. S.
,
Park
,
J.
, and
Shim
,
Y.
,
2010
, “
Variable Stiffness Mechanism for Human-Friendly Robots
,”
Mech. Mach. Theory
,
45
(
6
), pp.
880
897
. 10.1016/j.mechmachtheory.2010.01.001
3.
Rodríguez
,
A. G.
,
Chacón
,
J. M.
,
Donoso
,
A.
, and
Rodríguez
,
A. G. G.
,
2011
, “
Design of an Adjustable-Stiffness Spring: Mathematical Modeling and Simulation, Fabrication and Experimental Validation
,”
Mech. Mach. Theory
,
46
(
12
), pp.
1970
1979
. 10.1016/j.mechmachtheory.2011.07.002
4.
Donoso
,
A.
,
Chacón
,
J. M.
,
Rodríguez
,
A. G.
, and
Ureña
,
F.
,
2013
, “
On an Adjustable-Stiffness Spring Composed of Two Antagonistic Pairs of Nonlinear Leaf Springs Working in Post-Buckling
,”
Mech. Mach. Theory
,
63
, pp.
1
7
. 10.1016/j.mechmachtheory.2012.12.006
5.
Park
,
J. J.
,
Kim
,
B. S.
,
Song
,
J. B.
, and
Kim
,
H. S.
,
2008
, “
Safe Link Mechanism Based on Nonlinear Stiffness for Collision Safety
,”
Mech. Mach. Theory
,
43
(
10
), pp.
1332
1348
. 10.1016/j.mechmachtheory.2007.10.004
6.
Gao
,
F.
,
Liu
,
Y.
, and
Liao
,
W.-H.
,
2018
, “
Design of Powered Ankle-Foot Prosthesis With Nonlinear Parallel Spring Mechanism
,”
ASME J. Mech. Des.
,
140
(
5
), p.
055001
. 10.1115/1.4039385
7.
Gao
,
F.
,
Liu
,
Y.
, and
Liao
,
W. H.
,
2016
, “
A New Powered Ankle-Foot Prosthesis With Compact Parallel Spring Mechanism
,”
Proceedings of the IEEE International Conference on Robotics & Biomimetics
,
Qingdao, China
,
Dec. 3–7
, pp.
473
478
.
8.
Bidgoly
,
H. J.
,
Ahmadabadi
,
M. N.
, and
Zakerzadeh
,
M. R.
,
2016
, “
Design and Modeling of a Compact Rotational Nonlinear Spring
,”
Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
4356
4361
.
9.
Wu
,
Y. S.
, and
Lan
,
C. C.
,
2014
, “
Design of a Linear Variable-Stiffness Mechanism Using Preloaded Bistable Beams
,”
Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Besacon, France
,
July 8–11
, pp.
605
610
.
10.
Vanderborght
,
B.
,
Albu-Schaeffer
,
A.
,
Bicchi
,
A.
,
Burdet
,
E.
,
Caldwell
,
D. G.
,
Carloni
,
R.
,
Catalano
,
M.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Ganesh
,
G.
,
Garabini
,
M.
,
Grebenstein
,
M.
,
Grioli
,
G.
,
Haddadin
,
S.
,
Hoppner
,
H.
,
Jafari
,
A.
,
Laffranchi
,
M.
,
Lefeber
,
D.
,
Petit
,
F.
,
Stramigioli
,
S.
,
Tsagarakis
,
N.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Visser
,
L. C.
, and
Wolf
,
S.
,
2013
, “
Variable Impedance Actuators: A Review
,”
Robot. Auton. Syst.
,
61
(
12
), pp.
1601
1614
. 10.1016/j.robot.2013.06.009
11.
Simionescu
,
I.
, and
Ciupitu
,
L.
,
2000
, “
The Static Balancing of the Industrial Robot Arms: Part II: Continuous Balancing
,”
Mech. Mach. Theory
,
35
(
9
), pp.
1299
1311
. 10.1016/S0094-114X(99)00068-3
12.
Zhang
,
J.
,
Shaw
,
A. D.
,
Amoozgar
,
M.
,
Friswell
,
M. I.
, and
Woods
,
B. K.
,
2019
, “
Bidirectional Torsional Negative Stiffness Mechanism for Energy Balancing Systems
,”
Mech. Mach. Theory
,
131
, pp.
261
277
. 10.1016/j.mechmachtheory.2018.10.003
13.
Zhang
,
J.
,
Shaw
,
A. D.
,
Amoozgar
,
M.
,
Friswell
,
M. I.
, and
Woods
,
B. K.
,
2019
, “
Bidirectional Spiral Pulley Negative Stiffness Mechanism for Passive Energy Balancing
,”
ASME J. Mech. Robot.
,
11
(
5
), p.
054502
. 10.1115/1.4043818
14.
Jeong
,
H.
,
Cheong
,
J.
, and
Kwon
,
S. J.
,
2015
, “
Dual-Mode Variable Stiffness Actuator Using Two-Stage Worm Gear Transmission for Safe Robotic Manipulators
,”
Int. J. Precis. Eng. Man.
,
16
(
8
), pp.
1761
1769
. 10.1007/s12541-015-0231-x
15.
Huh
,
T. M.
,
Park
,
Y. J.
, and
Cho
,
K. J.
,
2012
, “
Design and Analysis of a Stiffness Adjustable Structure Using an Endoskeleton
,”
Int. J. Precis. Eng. Man.
,
13
(
7
), pp.
1255
1258
. 10.1007/s12541-012-0168-2
16.
Vu
,
H. Q.
,
Hauser
,
H.
,
Leach
,
D.
, and
Pfeifer
,
R.
,
2013
, “
A Variable Stiffness Mechanism for Improving Energy Efficiency of a Planar Single-Legged Hopping Robot
,”
Proceedings of the 2013 16th International Conference on Advanced Robotics
,
Montevideo, Uruguay
,
Nov. 25–29
, pp.
1
7
.
17.
Guo
,
J.
, and
Tian
,
G.
,
2015
, “
Conceptual Design and Analysis of Four Types of Variable Stiffness Actuators Based on Spring Pretension
,”
Int. J. Adv. Robot. Syst.
,
12
(
5
), p.
62
. 10.5772/60580
18.
Fedorov
,
D.
, and
Birglen
,
L.
,
2018
, “
Differential Noncircular Pulleys for Cable Robots and Static Balancing
,”
ASME J. Mech. Robot.
,
10
(
6
), p.
061001
. 10.1115/1.4041213
19.
Azadi
,
M.
,
Behzadipour
,
S.
, and
Faulkner
,
G.
,
2011
, “
Performance Analysis of a Semi-Active Mount Made by a New Variable Stiffness Spring
,”
J. Sound Vib.
,
330
(
12
), pp.
2733
2746
. 10.1016/j.jsv.2011.01.010
20.
Du
,
H.
,
Li
,
W.
, and
Zhang
,
N.
,
2011
, “
Semi-Active Variable Stiffness Vibration Control of Vehicle Seat Suspension Using an MR Elastomer Isolator
,”
Smart Mater. Struct.
,
20
(
10
), p.
105003
. 10.1088/0964-1726/20/10/105003
21.
Wu
,
T. H.
, and
Lan
,
C. C.
,
2016
, “
A Wide-Range Variable Stiffness Mechanism for Semi-Active Vibration Systems
,”
J. Sound Vib.
,
363
, pp.
18
32
. 10.1016/j.jsv.2015.10.024
22.
Chen
,
Y. H.
, and
Lan
,
C. C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
. 10.1115/1.4005865
23.
Berselli
,
G.
,
Vertechy
,
R.
,
Vassura
,
G.
, and
Castelli
,
V. P.
,
2008
, “
Design of a Single-Acting Constant-Force Actuator Based on Dielectric Elastomers
,”
ASME J. Mech. Robot.
,
1
(
1
), pp.
313
321
. 10.1115/detc2008-49836
24.
Boyle
,
C.
,
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Evans
,
M. S.
,
2003
, “
Dynamic Modeling of Compliant Constant-Force Compression Mechanisms
,”
Mech. Mach. Theory
,
38
(
12
), pp.
1469
1487
. 10.1016/S0094-114X(03)00098-3
25.
Pham
,
H. T.
, and
Wang
,
D. A.
,
2011
, “
A Constant-Force Bistable Mechanism for Force Regulation and Overload Protection
,”
Mech. Mach. Theory
,
46
(
7
), pp.
899
909
. 10.1016/j.mechmachtheory.2011.02.008
26.
Wang
,
D. A.
,
Chen
,
J. H.
, and
Pham
,
H. T.
,
2013
, “
A Constant-Force Bistable Micromechanism
,”
Sensor. Actuat. A-Phys.
,
189
(
2
), pp.
481
487
. 10.1016/j.sna.2012.10.042
27.
Parlaktaş
,
V.
,
2013
, “
Spatial Compliant Constant-Force Mechanism
,”
Mech. Mach. Theory
,
67
, pp.
152
165
. 10.1016/j.mechmachtheory.2013.04.007
28.
Chen
,
Y. H.
, and
Lan
,
C. C.
,
2012
, “
Design of a Constant-Force Snap-Fit Mechanism for Minimal Mating Uncertainty
,”
Mech. Mach. Theory
,
55
, pp.
34
50
. 10.1016/j.mechmachtheory.2012.04.006
29.
Chen
,
C. C.
, and
Lan
,
C. C.
,
2017
, “
An Accurate Force Regulation Mechanism for High-Speed Handling of Fragile Objects Using Pneumatic Grippers
,”
IEEE T. Autom. Sci. Eng.
,
15
(
4
), pp.
1600
1608
. 10.1109/aim.2016.7576798
30.
Sweere
,
H. C.
,
Fluhrer
,
R. W.
,
Al-Zebdeh
,
K.
,
Eliason
,
J.
,
Lindblad
,
S. C.
,
Showalter
,
M. J.
,
Theis
,
J. W.
, and
Benson
,
C. D.
,
2006
, “
Monitor Support System
,”
Google Patents
.
31.
Liu
,
Y.
,
Li
,
D.
,
Yu
,
D.
,
Miao
,
J.
, and
Yao
,
J.
,
2017
, “
Design of a Curved Surface Constant Force Mechanism
,”
Mech. Based Des. Struct.
,
45
(
2
), pp.
160
172
. 10.1080/15397734.2016.1157692
32.
Liu
,
Y.
,
Yu
,
D.
, and
Yao
,
J.
,
2016
, “
Design of an Adjustable Cam Based Constant Force Mechanism
,”
Mech. Mach. Theory
,
103
, pp.
85
97
. 10.1016/j.mechmachtheory.2016.04.014
33.
López-Martínez
,
J.
,
García-Vallejo
,
D.
,
Arrabal-Campos
,
F. M.
, and
Garcia-Manrique
,
J. M.
,
2018
, “
Design of Three New Cam-Based Constant-Force Mechanisms
,”
ASME J. Mech. Des.
,
140
(
8
), p.
082302
. 10.1115/1.4040174
34.
Lan
,
C. C.
,
Yang
,
S. A.
, and
Wu
,
Y. S.
,
2014
, “
Design and Experiment of a Compact Quasi-Zero-Stiffness Isolator Capable of a Wide Range of Loads
,”
J. Sound Vib.
,
333
(
20
), pp.
4843
4858
. 10.1016/j.jsv.2014.05.009
35.
Zhou
,
J.
,
Wang
,
X.
,
Xu
,
D.
, and
Bishop
,
S.
,
2015
, “
Nonlinear Dynamic Characteristics of a Quasi-Zero Stiffness Vibration Isolator With Cam–Roller–Spring Mechanisms
,”
J. Sound Vib.
,
346
, pp.
53
69
. 10.1016/j.jsv.2015.02.005
36.
Zhou
,
J.
,
Xu
,
D.
, and
Bishop
,
S.
,
2015
, “
A Torsion Quasi-Zero Stiffness Vibration Isolator
,”
J. Sound Vib.
,
338
, pp.
121
133
. 10.1016/j.jsv.2014.10.027
37.
Prakashah
,
H. N.
, and
Zhou
,
H.
,
2016
, “
Synthesis of Constant Torque Compliant Mechanisms
,”
ASME J. Mech. Robot.
,
8
(
6
), p.
064503
. 10.1115/1.4034885
38.
Duval
,
E. F.
,
2010
, “
Dual Pulley Constant Force Mechanism
,”
Google Patents
.
39.
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2006
, “
Substantially Constant-Force Exercise Machine
,”
Google Patents
.
40.
Riley
,
R. Q.
, and
Carey
,
D. L.
,
1980
, “
Exercise Machine With Spring-Cam Arrangement for Equalizing the Force Required Through the Exercise Stroke
,”
Google Patents
.
41.
Li
,
M.
, and
Cheng
,
W.
,
2018
, “
Design and Experimental Validation of a Large-Displacement Constant-Force Mechanism
,”
ASME J. Mech. Robot.
,
10
(
5
), p.
051007
. 10.1115/1.4040437
42.
Li
,
M.
,
Cheng
,
W.
, and
Xie
,
R.
,
2019
, “
Design and Experimental Validation of a Cam-Based Constant-Force Compression Mechanism With Friction Considered
,”
P. I. Mech. Eng. C-J. Mec.
,
233
(
11
), pp.
3873
3887
. 10.1177/0954406218806015
43.
Thompson
,
T. J.
,
2012
, “
Graphical Synthesis of Fourbar Mechanisms by Three-Position, Instant-Center Specification
,”
Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, pp.
715
724
.
You do not currently have access to this content.