Abstract

A compliant toggle-linkage mechanism with the dual functions of displacement amplification and reduction is proposed. A series of compliant amplification mechanisms are examined by combining multi-group flexure toggle linkages, showcasing a flexible design with modular flexure toggle-linkage building blocks. A compliant toggle-lever mechanism is then investigated in detail as a displacement amplifier and a reducer for piezoelectric actuators by exchanging the input and output ports. Its kinetostatic and dynamic performances are captured using an improved dynamic stiffness matrix modeling procedure with high prediction accuracy and robustness, which shifts the end nodes of all adjacent flexure hinge/beam members to be coincident in order to deal with the irregular connection of building blocks. It is interestingly observed that the output displacements with forward and reverse motion directions can be simultaneously achieved with such a compliant toggle-lever mechanism by changing the structural parameters. Finally, the relationship of displacement amplification and reduction ratios between the input and output ports is clarified and discussed by comparing the results among the dynamic stiffness matrix model, finite element simulation, and experimental testing.

References

1.
Howell
,
L. L.
,
2013
, “
Compliant Mechanisms
,”
21st Century Kinematics: The 2012 NSF Workshop
,
Springer London
,
London
.
2.
Turkkan
,
O. A.
, and
Su
,
H. J.
,
2017
, “
A General and Efficient Multiple Segment Method for Kinetostatic Analysis of Planar Compliant Mechanisms
,”
Mech. Mach. Theory
,
112
, pp.
205
217
.
3.
Platl
,
V.
, and
Zentner
,
L.
,
2023
, “
An Analytical Approach for Calculating the First Natural Frequency of Flexure Hinges With Variable Cross-Sections for Compliant Mechanisms
,”
IFToMM World Congress on Mechanism and Machine Science
,
Tokyo, Japan
,
Nov. 5–9
,
Springer Nature Switzerland
,
Cham
, pp.
491
501
.
4.
Wang
,
R.
,
Li
,
X.
, and
Huang
,
H.
,
2023
, “
Design of Thick Panels Origami-Inspired Flexible Grasper With Anti-Interference Ability
,”
Mech. Mach. Theory
,
189
, p.
105431
.
5.
Villalba
,
D.
,
Gonçalves
,
M.
,
Dias-de-Oliveira
,
J.
,
Andrade-Campos
,
A.
, and
Valente
,
R.
,
2023
, “
IGA-Based Topology Optimization in the Design of Stress-Constrained Compliant Mechanisms
,”
Struct. Multidiscip. Optim.
,
66
(
12
), p.
244
.
6.
Hao
,
G. B.
,
2015
, “
Extended Nonlinear Analytical Models of Compliant Parallelogram Mechanisms: Third-Order Models
,”
Trans. Can. Soc. Mech. Eng.
,
39
(
1
), pp.
71
83
.
7.
Serafino
,
S.
,
Fanghella
,
P.
, and
Verotti
,
M.
,
2023
, “
Design and Testing of High-Accuracy Curved Cross-Axis Flexural Pivots With Cable-Driven Actuation
,”
Mech. Mach. Theory
,
189
, p.
105418
.
8.
Li
,
Y.
,
Cao
,
P.
,
Zhang
,
P.
,
Yang
,
H.
,
Zhu
,
X.
, and
Guo
,
R.
,
2023
, “
Design and Development of a Hair-Like Sensor With Bridge-Type Flexible Amplification Mechanisms
,”
Sensors
,
23
(
17
), p.
7354
.
9.
Lin
,
J.
,
Qi
,
C.
,
Gao
,
F.
,
Yue
,
Y.
,
Hu
,
Y.
, and
Wei
,
B.
,
2023
, “
Modeling and Verification for a Three-Degree-of-Freedom Flexure-Based Planar Parallel Micro Manipulator
,”
ASME J. Mech. Rob.
,
15
(
4
), p.
041006
.
10.
Zhang
,
Y.
,
Song
,
Y.
,
Lu
,
F.
,
Zhang
,
D.
,
Yang
,
L.
,
Cui
,
T.
,
He
,
X.
, and
Zhang
,
K.
,
2023
, “
Design and Experiment of Greenhouse Self-Balancing Mobile Robot Based on PR Joint Sensor
,”
Agriculture
,
13
(
10
), p.
2040
.
11.
Ding
,
B. X.
,
Li
,
X.
,
Li
,
C. L.
,
Li
,
Y. M.
, and
Chen
,
S. C.
,
2023
, “
A Survey on the Mechanical Design for Piezo-Actuated Compliant Micro-Positioning Stages
,”
Rev. Sci. Instrum.
,
94
(
10
), p.
101502
.
12.
Iqbal
,
S.
, and
Malik
,
A.
,
2019
, “
A Review on MEMS Based Micro Displacement Amplification Mechanisms
,”
Sens. Actuators, A
,
300
, p.
111666
.
13.
Kanchan
,
M.
,
Santhya
,
M.
,
Bhat
,
R.
, and
Naik
,
N.
,
2023
, “
Application of Modeling and Control Approaches of Piezoelectric Actuators: A Review
,”
Technologies
,
11
(
6
), p.
155
.
14.
Teoh
,
C. Y.
,
Wong
,
J. K.
,
Ko
,
Y. H.
,
Hamid
,
M. N. A.
,
Ooi
,
L. E.
, and
Tan
,
W. H.
,
2023
, “
Design of Two-Stage Force Amplification Frame for Piezoelectric Energy Harvester
,”
J. Mech. Eng.
,
20
(
3
), pp.
1823
5514
.
15.
Wang
,
K.
,
Huang
,
P.
,
Liu
,
Q.
,
Zhu
,
L.
, and
Zhu
,
Z.
,
2023
, “
Generalized Element-Node Complete Model and Its Implementation for the Optimal Design of a Piezo-Actuated Compliant Amplifier
,”
Rev. Sci. Instrum.
,
94
(
8
), p.
085004
.
16.
Yoshikawa
,
K.
, and
Murata
,
Y.
,
2023
, “
Improvement of Self-Shape Measurement Accuracy in a Self-Sensing Flexible Array Probe
,”
IEEE Trans. Electron. Inform. Syst.
,
143
(
9
), pp.
854
861
.
17.
HaLevy
,
O.
,
Melech
,
N.
,
Lulinsky
,
S.
, and
Krylov
,
S.
,
2023
, “
Compliant Parallel Motion Linkage Amplification Mechanism for Resonant Force/Acceleration Sensing
,”
IEEE Sens. J.
,
23
(
16
), pp.
18000
18012
.
18.
Kandharkar
,
S. R.
,
Pardeshi
,
S. S.
,
Soman
,
R.
,
Patange
,
A. D.
, and
Ostachowicz
,
W.
,
2023
, “
Development of Distributed Compliant Mechanism for Two Distinct Applications: Displacement Amplifying and Object Holding Mechanism
,”
Eng. Res. Express
,
5
(
2
), p.
025050
.
19.
Xie
,
W. L.
, and
Gan
,
J. Q.
,
2023
, “
Design of a 2-DOF XZ Precision Positioning Platform Using Novel Z-Shaped Flexure Hinges
,”
International Conference on Manipulation Automation and Robotics at Small Scales (MARSS)
,
IEEE
, pp.
1
7
.
20.
Cui
,
F. N.
,
Li
,
Y. M.
, and
Qian
,
J. N.
,
2021
, “
Development of a 3-DOF Flexible Micro-Motion Platform Based on a New Compound Lever Amplification Mechanism
,”
Micromachines
,
12
(
6
), p.
686
.
21.
Trimzi
,
M. A.
,
Ham
,
Y. B.
,
An
,
B. C.
,
Choi
,
Y. M.
,
Park
,
J. H.
, and
Yun
,
S. N.
,
2020
, “
Development of a Piezo-Driven Liquid Jet Dispenser With Hinge-Lever Amplification Mechanism
,”
Micromachines
,
11
(
2
), p.
117
.
22.
Fujimura
,
Y.
,
Tsukamoto
,
T.
, and
Tanaka
,
S.
,
2018
, “
Piezoelectric Moonie-Type Resonant Microactuator
,”
Electron. Commun. Jpn.
,
101
(
3
), pp.
3
10
.
23.
Uyen
,
T. M. T.
,
Minh
,
P. S.
,
Nguyen
,
V. T.
,
Do
,
T. T.
,
Nguyen Le Dang
,
H.
, and
Nguyen
,
V. T. T.
,
2023
, “
Amplification Ratio of a Recycled Plastics-Compliant Mechanism Flexure Hinge
,”
Appl. Sci.
,
13
(
23
), p.
12825
.
24.
Choi
,
V. K. B.
,
Lee
,
J. J.
,
Kim
,
G. H.
,
Lim
,
H. J.
, and
Kwon
,
S. G.
,
2018
, “
Amplification Ratio Analysis of a Bridge-Type Mechanical Amplification Mechanism Based on a Fully Compliant Model
,”
Mech. Mach. Theory
,
121
, pp.
355
372
.
25.
Wang
,
J.
,
Jing
,
Z. J.
,
Xie
,
Z. L.
,
Ning
,
Z. Q.
, and
Qi
,
B.
,
2023
, “
Analysis and Optimization of Dynamic and Static Characteristics of the Compliant-Amplifying Mechanisms
,”
Micromachines
,
14
(
8
), p.
1502
.
26.
Li
,
P. X.
,
Zhu
,
H. L.
, and
Lai
,
L. J.
,
2022
, “
An Improved Dynamic Model and Matrix Displacement Model for Distributed-Compliance Bridge-Type Amplification Mechanism
,”
Actuators
,
11
(
12
), p.
368
.
27.
Ling
,
M. X.
,
Zhang
,
X. M.
, and
Cao
,
J. Y.
,
2022
, “
Extended Dynamic Stiffness Model for Analyzing Flexure-Hinge Mechanisms With Lumped Compliance
,”
ASME J. Mech. Des.
,
144
(
1
), p.
013304
.
28.
Wang
,
F. G.
,
Huo
,
Z. C.
,
Liang
,
C. M.
,
Shi
,
B. C.
,
Tian
,
Y. L.
,
Zhao
,
X. Y.
, and
Zhang
,
D. W.
,
2018
, “
A Novel Actuator-Internal Micro/Nano Positioning Stage With an Arch-Shape Bridge-Type Amplifier
,”
IEEE Trans. Ind. Electron.
,
66
(
12
), pp.
9161
9172
.
29.
Zhu
,
J. X.
,
Hao
,
G. B.
,
Liu
,
T. H.
, and
Li
,
H. Y.
,
2023
, “
Design of an Over-Constraint Based Nearly-Constant Amplification Ratio Compliant Mechanism
,”
Mech. Mach. Theory
,
186
, p.
105347
.
30.
Zhang
,
X. Y.
,
Li
,
W. P.
,
Li
,
S.
, and
Zheng
,
Y.
,
2023
, “
Design, Modeling, and Analysis of a Novel XY Micro-Displacement Scanning Stage With an Elliptical Compliant Restraint Mechanism
,”
Phys. Scr.
,
98
(
11
), p.
115505
.
31.
Huynh
,
N. T.
,
Nguyen
,
M. H.
, and
Dinh
,
L. C. K
.,
2023
, “
Design Optimization of a Novel Symmetrical Differential Lever Displacement Magnification Compliant Mechanism
.”
32.
Zhang
,
T.
,
Xiong
,
L. G.
,
Pan
,
Z. Q.
,
Zhang
,
C. H.
,
Qu
,
W.
,
Wang
,
Y. H.
, and
Yang
,
C. M.
,
2023
, “
Design and Analysis of XY Large Travel Micro Stage Based on Secondary Symmetric Lever Amplification
,”
Micromachines
,
14
(
9
), p.
1805
.
33.
Dong
,
G.
,
Sun
,
S. W.
,
Kong
,
X. Y.
,
Chen
,
X. Y.
,
Yin
,
T. H.
,
Wu
,
N. S.
,
Huang
,
P. N.
, and
Wang
,
Z. X.
,
2024
, “
Design and Analysis of a New Micro-Positioning Platform for Ceramic Material Testing
,”
Microsyst. Technol.
,
30
(
1
), pp.
55
64
.
34.
Lavanya
,
S. B.
,
Jayanth
,
G. R.
, and
Mohanty
,
A. K.
,
2023
, “
Optimal Design of Bridge Amplifiers for Large-Range Linear Characteristics
,”
IFToMM World Congress on Mechanism and Machine Science
,
Tokyo, Japan
,
Nov. 5–9
, pp.
721
730
.
35.
Zhang
,
X.
,
Kang
,
X.
, and
Li
,
B.
,
2023
, “
Development and Evaluation of a Light-Weight Flexure-Based Lockable Joint for Morphing Wings
,”
Aerosp. Sci. Technol.
,
143
, p.
108720
.
36.
Kiziroglou
,
M. E.
,
Temelkuran
,
B.
,
Yeatman
,
E. M.
, and
Yang
,
G. Z.
,
2020
, “
Micro Motion Amplification–A Review
,”
IEEE Access.
,
8
, pp.
64037
64055
.
37.
Wang
,
M. Z.
,
Zhang
,
C.
,
Liu
,
S. T.
, and
Wang
,
X. L.
,
2023
, “
Modeling and Analysis of a Conical Bridge-Type Displacement Amplification Mechanism Using the Non-Uniform Rational B-Spline Curve
,”
Materials
,
16
(
18
), p.
6162
.
38.
Xu
,
D. M.
,
Yang
,
F.
,
Yu
,
S. M.
,
Xu
,
C.
,
Liu
,
X. L.
,
Zhao
,
Z. W.
,
Zhang
,
X. H.
,
Li
,
S. T.
,
Yang
,
H. X.
, and
Lu
,
Q.
,
2023
, “
A Three-Stage Amplification Piezoelectric-Actuated Micro-Gripper With Adjustable Output Displacement: Design, Modeling, and Experimental Evaluation
,”
Smart Mater. Struct.
,
32
(
9
), p.
095033
.
39.
Sebald
,
G.
,
Tung
,
N. T.
,
Taxil
,
G.
,
Ducharne
,
B.
,
Chavez
,
J.
,
Ono
,
T.
,
Kuwano
,
H.
,
Lefeuvre
,
E.
, and
Lallart
,
M.
,
2023
, “
Piezoelectric Small Scale Generator: Towards Near-Joule Output Energy Generation
,”
Smart Mater. Struct.
,
32
(
8
), p.
085009
.
40.
Yu
,
S. M.
,
Liang
,
J. Y.
,
Yang
,
F.
,
Wang
,
H. T.
,
Liu
,
X. L.
,
Xu
,
C.
,
Wang
,
Z.
, and
Xu
,
D. M.
,
2023
, “
A Novel Inchworm Piezoelectric Actuator Using Two-Stage Amplification Mechanism With High Speed: Design, Modeling, and Experimental Evaluation
,”
Smart Mater. Struct.
,
32
(
5
), p.
055020
.
41.
Yuan
,
X. Q.
,
Liu
,
Y. X.
,
Zou
,
H.
,
Ji
,
J. J.
,
Zhou
,
T.
, and
Wang
,
W. D.
,
2022
, “
Design and Analysis of a 2-D Piezoelectric Platform Based on Three-Stage Amplification and L-Shaped Guiding
,”
IEEE Trans. Instrum. Meas.
,
71
, pp.
1
12
.
42.
Zhou
,
K. Y.
,
Liu
,
P. B.
,
Lu
,
S. S.
, and
Yan
,
P.
,
2022
, “
Design and Modeling of a Piezo-Driven Three-Dimensional Bridge-Type Amplification Mechanism With Input/Output Guiding Constraint
,”
Rev. Sci. Instrum.
,
93
(
2
), p.
025005
.
43.
Chang
,
W. T.
,
Lee
,
W. I.
, and
Hsu
,
K. L.
,
2021
, “
Analysis and Experimental Verification of Mechanical Errors in Nine-Link Type Double-Toggle Mold/Die Clamping Mechanisms
,”
Appl. Sci.
,
11
(
2
), p.
832
.
44.
Park
,
S.
,
Bae
,
J.
,
Jeon
,
Y.
,
Chu
,
K.
,
Bak
,
J.
,
Seo
,
T.
, and
Kim
,
J.
,
2018
, “
Optimal Design of Toggle-Linkage Mechanism for Clamping Applications
,”
Mech. Mach. Theory
,
120
, pp.
203
212
.
45.
Huang
,
M. S.
,
Lin
,
T. Y.
, and
Fung
,
R. F.
,
2011
, “
Key Design Parameters and Optimal Design of a Five-Point Double-Toggle Clamping Mechanism
,”
Appl. Math. Model.
,
35
(
9
), pp.
4304
4320
.
46.
Lin
,
W. Y.
, and
Hsiao
,
K. M.
,
2003
, “
Investigation of the Friction Effect at Pin Joints for the Five-Point Double-Toggle Clamping Mechanisms of Injection Molding Machines
,”
Int. J. Mech. Sci.
,
45
(
11
), pp.
1913
1927
.
47.
Gao
,
J. Z.
,
Zhao
,
S. D.
,
Li
,
J. X.
,
Jiang
,
F.
,
Du
,
W.
,
Zheng
,
Z. H.
, and
Feng
,
Z. Y.
,
2022
, “
A Novel Main Drive System for the Servo Press: Combination of Integrated Motor and Symmetrically Toggle Booster Mechanism
,”
CIRP J. Manuf. Sci. Technol.
,
37
, pp.
596
612
.
48.
Jencks
,
C. L.
, and
Murphy
,
F. H.
,
1964
, “
Electric Circuit Breaker Including Stop Means for Limiting Movement of a Toggle Linkage
,” U.S. Patent No. 3158717.
49.
Nagai
,
S.
,
Yumiba
,
H.
, and
Saitoh
,
A.
,
2002
, “
Electric Clamp Apparatus
,” U.S. Patent No. 6354580.
50.
Bakermans
,
J. C. W.
,
1977
, “
Hand Tool Having Double Toggle Linkage
,” U.S. Patent No. 4005516.
51.
Ling
,
M. X.
,
Cao
,
J. Y.
, and
Pehrson
,
N.
,
2019
, “
Kinetostatic and Dynamic Analyses of Planar Compliant Mechanisms Via a Two-Port Dynamic Stiffness Model
,”
Precis. Eng.
,
57
, pp.
149
161
.
52.
Abdalla
,
M.
,
Frecker
,
M.
,
Gürdal
,
Z.
,
Johnson
,
T.
, and
Lindner
,
D. K.
,
2005
, “
Design of a Piezoelectric Actuator and Compliant Mechanism Combination for Maximum Energy Efficiency
,”
Smart Mater. Struct.
,
14
(
6
), pp.
1421
1430
.
53.
Tantanawat
,
T.
, and
Kota
,
S.
,
2007
, “
Design of Compliant Mechanisms for Minimizing Input Power in Dynamic Applications
,”
ASME J. Mech. Des.
,
129
(
10
), pp.
1064
1075
.
54.
Chen
,
F. X.
,
Du
,
Z. J.
,
Yang
,
M.
,
Gao
,
F. T.
,
Dong
,
W.
, and
Zhang
,
D.
,
2017
, “
Design and Analysis of a Three-Dimensional Bridge-Type Mechanism Based on the Stiffness Distribution
,”
Precis. Eng.
,
51
, pp.
48
58
.
55.
Ling
,
M. X.
,
Zhou
,
H.
, and
Chen
,
L. G.
,
2023
, “
Dynamic Stiffness Matrix With Timoshenko Beam Theory and Linear Frequency Solution for Use in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
061002
.
56.
Ling
,
M. X.
,
Wu
,
S. L.
,
Luo
,
Z. H.
,
Chen
,
L. G.
, and
Huang
,
T.
,
2023
, “
An Electromechanical Dynamic Stiffness Matrix of Piezoelectric Stacks for Systematic Design of Micro/Nano Motion Actuators
,”
Smart Mater. Struct.
,
32
(
11
), p.
115012
.
You do not currently have access to this content.