Abstract

Catalogs have been used for over a century for designing engineering systems. While catalogs are excellent repositories of engineering information, they are difficult to navigate and visualize, specifically to spot clusters, gaps, substitutes, and outliers. Inspired by Ashby charts for material selection, we propose here a visual representation of engineering catalogs using neural networks. In particular, we employ variational autoencoders (VAEs) to project catalog data onto a lower-dimensional latent space. The latent space can then be visualized to explore the underlying structure of the catalog. Specifically, catalog creators can identify gaps and outliers in their data, while end-users can compare catalogs from competitors and easily find substitutes. Contours can be superimposed on the latent space to enable selection based on user-defined attributes; these contours are generalizations of design indices associated with Ashby charts. Various examples of catalogs ranging from materials and bearings, to motors and batteries are illustrated using the proposed method. By using these examples, we (1) study the impact of the latent space dimension on the representational error, (2) illustrate how designers can easily choose alternate configurations based on their design requirements, and (3) identify gaps in catalog offerings, providing a stimulus for new product development.

References

1.
Requicha
,
A. G.
,
1980
, “
Representations for Rigid Solids: Theory, Methods, and Systems
,”
ACM Comput. Surv. (CSUR)
,
12
(
4
), pp.
437
464
.
2.
Shigley
,
J. E.
,
Mischke
,
C. R.
, and
Brown
,
T. H.
, Jr
,
2004
,
Standard Handbook of Machine Design
,
McGraw-Hill Education
,
New York
.
3.
Martinez Leon
,
A.
,
Rukavitsyn
,
A.
, and
Jatsun
,
S.
,
2021
, “
UAV Airframe Topology Optimization
,” International Conference on Industrial Engineering,
Springer
, pp.
338
346
.
4.
NIST/SEMATECH
,
2013
, “
Exploratory Data Analysis (EDA)
,” https://www.itl.nist.gov/div898/handbook/eda/eda.htm, Accessed March 4, 2023.
5.
Wang
,
Z.
,
Zheng
,
P.
,
Li
,
X.
, and
Chen
,
C.-H.
,
2022
, “
Implications of Data-Driven Product Design: From Information Age Towards Intelligence Age
,”
Adv. Eng. Inform.
,
54
, p.
101793
.
6.
Ashby
,
M. F.
, and
CEBON
,
D.
,
1993
, “
Materials Selection in Mechanical Design
,”
Le J. de Physique IV
,
3
(
C7
), p.
C7–1
.
7.
Pham
,
D.
, and
Afify
,
A.
,
2007
, “
Clustering Techniques and Their Applications in Engineering
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
221
(
11
), pp.
1445
1459
.
8.
Shwartz-Ziv
,
R.
, and
Armon
,
A.
,
2022
, “
Tabular Data: Deep Learning is Not All You Need
,”
Inf. Fusion
,
81
, pp.
84
90
.
9.
Keim
,
D. A.
,
2002
, “
Information Visualization and Visual Data Mining
,”
IEEE Trans. Vis. Comput. Graph.
,
8
(
1
), pp.
1
8
.
10.
Ashby
,
M. F.
, and
Jones
,
D. R.
,
2011
,
Engineering Materials 1: An Introduction to Properties, Applications and Design
, Vol.
1
,
Elsevier
,
New York
.
11.
Ashby
,
M. F.
, and
Johnson
,
K.
,
2013
,
Materials and Design: The Art and Science of Material Selection in Product Design
,
Butterworth-Heinemann
,
New York
.
12.
Oberg
,
E.
,
Jones
,
F. D.
,
Horton
,
H. L.
, and
Ryffel
,
H. H.
,
2004
,
Machinery’s Handbook: A Reference Book for the Mechanical Engineer, Designer, Manufacturing Engineer, Draftsman Toolmaker and Machinist
,
Industrial Press
,
New York
.
13.
Ananthasuresh
,
G.
, and
Ashby
,
M.
,
2003
, “
Concurrent Design and Material Selection for Trusses
,” Workshop: Optimal Design,
Laboratoire de Mécanique des Solides, Ecole Polytechnique
,
Palaiseau, France
.
14.
Ashby
,
M.
,
2013
, “
Designing Architectured Materials
,”
Scr. Mater.
,
68
(
1
), pp.
4
7
.
15.
Ware
,
C.
,
2021
,
Visual Thinking for Information Design
,
Morgan Kaufmann
,
New York
.
16.
Baker
,
J.
,
Jones
,
D.
, and
Burkman
,
J.
,
2009
, “
Using Visual Representations of Data to Enhance Sensemaking in Data Exploration Tasks
,”
J. Assoc. Inf. Syst.
,
10
(
7
), p.
2
.
17.
Liu
,
S.
,
Maljovec
,
D.
,
Wang
,
B.
,
Bremer
,
P.-T.
, and
Pascucci
,
V.
,
2016
, “
Visualizing High-Dimensional Data: Advances in the Past Decade
,”
IEEE Trans. Vis. Comput. Graph.
,
23
(
3
), pp.
1249
1268
.
18.
De Oliveira
,
M. F.
, and
Levkowitz
,
H.
,
2003
, “
From Visual Data Exploration to Visual Data Mining: A Survey
,”
IEEE Trans. Vis. Comput. Graph.
,
9
(
3
), pp.
378
394
.
19.
Rudin
,
C.
,
Chen
,
C.
,
Chen
,
Z.
,
Huang
,
H.
,
Semenova
,
L.
, and
Zhong
,
C.
,
2022
, “
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
,”
Stat. Surv.
,
16
, pp.
1
85
.
20.
Abdi
,
H.
, and
Williams
,
L. J.
,
2010
, “
Principal Component Analysis
,”
Wiley Interdiscipl. Rev.: Comput. Stat.
,
2
(
4
), pp.
433
459
.
21.
Kruskal
,
J. B.
, and
Wish
,
M.
,
1978
,
Multidimensional Scaling
,
Sage
,
Newbury Park
.
22.
Knerr
,
N.
, and
Selva
,
D.
,
2016
, “
Cityplot: Visualization of High-Dimensional Design Spaces With Multiple Criteria
,”
ASME J. Mech. Des.
,
138
(
9
), p.
091403
.
23.
Kohonen
,
T.
,
1990
, “
The Self-organizing Map
,”
Proc. IEEE
,
78
(
9
), pp.
1464
1480
.
24.
Thole
,
S. P.
, and
Ramu
,
P.
,
2020
, “
Design Space Exploration and Optimization Using Self-organizing Maps
,”
Struct. Multidiscipl. Optim.
,
62
(
3
), pp.
1071
1088
.
25.
Kagie
,
M.
,
Van Wezel
,
M.
, and
Groenen
,
P. J.
,
2010
, “Map Based Visualization of Product Catalogs,”
Recommender Systems Handbook
,
Springer
, pp.
547
576
.
26.
Mika
,
S.
,
Schölkopf
,
B.
,
Smola
,
A.
,
Müller
,
K.-R.
,
Scholz
,
M.
, and
Rätsch
,
G.
,
1998
, “
Kernel PCA and De-noising in Feature Spaces
,” Advances in Neural Information Processing Systems, Vol.
11
.
27.
Chen
,
W.
,
Fuge
,
M.
, and
Chazan
,
J.
,
2017
, “
Design Manifolds Capture the Intrinsic Complexity and Dimension of Design Spaces
,”
J. Mech. Des.
,
139
(
5
), p.
051102
.
28.
Wang
,
Z.
,
Ferreira
,
N.
,
Wei
,
Y.
,
Bhaskar
,
A. S.
, and
Scheidegger
,
C.
,
2016
, “
Gaussian Cubes: Real-Time Modeling for Visual Exploration of Large Multidimensional Datasets
,”
IEEE Trans. Vis. Comput. Graph.
,
23
(
1
), pp.
681
690
.
29.
Van der Maaten
,
L.
, and
Hinton
,
G.
,
2008
, “
Visualizing Data Using T-SNE
,”
J. Mach. Learn. Res.
,
9
(
11
), pp.
2579
2605
.
30.
McInnes
,
L.
,
Healy
,
J.
, and
Melville
,
J.
,
2018
, “UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction,” arXiv preprint arXiv:1802.03426.
31.
Sakurada
,
M.
, and
Yairi
,
T.
,
2014
, “
Anomaly Detection Using Autoencoders With Nonlinear Dimensionality Reduction
,” Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, pp.
4
11
.
32.
Wang
,
Y.
,
Yao
,
H.
, and
Zhao
,
S.
,
2016
, “
Auto-Encoder Based Dimensionality Reduction
,”
Neurocomputing
,
184
, pp.
232
242
.
33.
Wang
,
D.
, and
Gu
,
J.
,
2018
, “
Vasc: Dimension Reduction and Visualization of Single-Cell Rna-seq Data by Deep Variational Autoencoder
,”
Gen., Proteom. Bioinform.
,
16
(
5
), pp.
320
331
.
34.
Anowar
,
F.
,
Sadaoui
,
S.
, and
Selim
,
B.
,
2021
, “
Conceptual and Empirical Comparison of Dimensionality Reduction Algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, T-SNE)
,”
Comput. Sci. Rev.
,
40
, p.
100378
.
35.
Huang
,
H.
,
Wang
,
Y.
,
Rudin
,
C.
, and
Browne
,
E. P.
,
2022
, “
Towards a Comprehensive Evaluation of Dimension Reduction Methods for Transcriptomic Data Visualization
,”
Commun. Biol.
,
5
(
1
), p.
719
.
36.
Sarwar
,
B.
,
Karypis
,
G.
,
Konstan
,
J.
, and
Riedl
,
J. T.
,
2000
, “Application of Dimensionality Reduction in Recommender System—A Case Study,”
University of Minnesota
, Technical Report, Report No. 00-043. https://conservancy.umn.edu/items/d64e705a-5383-4290-a598-dec0c0fd727a
37.
Rickman
,
J. M.
,
2018
, “
Data Analytics and Parallel-Coordinate Materials Property Charts
,”
npj Comput. Mater.
,
4
(
1
), p.
5
.
38.
Schölkopf
,
B.
,
Smola
,
A.
, and
Müller
,
K.-R.
,
2005
, “Kernel Principal Component Analysis,”
Artificial Neural Networks—ICANN’97
, 7th International Conference Lausanne, Switzerland, Oct. 8–10, 1997 Proceeedings,
Springer
, pp.
583
588
.
39.
Saeed
,
N.
,
Nam
,
H.
,
Haq
,
M. I. U.
, and
Muhammad Saqib
,
D. B.
,
2018
, “
A Survey on Multidimensional Scaling
,”
ACM Comput. Surv. (CSUR)
,
51
(
3
), pp.
1
25
.
40.
Kingma
,
D. P.
, and
Welling
,
M.
,
2019
, “An Introduction to Variational Autoencoders,” arXiv preprint arXiv:1906.02691.
41.
Higgins
,
I.
,
Matthey
,
L.
,
Pal
,
A.
,
Burgess
,
C.
,
Glorot
,
X.
,
Botvinick
,
M.
,
Mohamed
,
S.
, and
Lerchner
,
A.
,
2016
, “
Beta-VAE: Learning Basic Visual Concepts With a Constrained Variational Framework
,” International Conference on Learning Representations.
42.
MacDorman
,
K. F.
,
Green
,
R. D.
,
Ho
,
C.-C.
, and
Koch
,
C. T.
,
2009
, “
Too Real for Comfort? Uncanny Responses to Computer Generated Faces
,”
Comput. Human Behav.
,
25
(
3
), pp.
695
710
.
43.
Chen
,
J.
,
Sathe
,
S.
,
Aggarwal
,
C.
, and
Turaga
,
D.
,
2017
, “
Outlier Detection With Autoencoder Ensembles
,” Proceedings of the 2017 SIAM International Conference on Data Mining,
SIAM
, pp.
90
98
.
44.
Xu
,
H.
,
Chen
,
W.
,
Zhao
,
N.
,
Li
,
Z.
,
Bu
,
J.
,
Li
,
Z.
, and
Liu
,
Y.
, et al.,
2018
, “
Unsupervised Anomaly Detection Via Variational Auto-Encoder for Seasonal KPIs in Web Applications
,” Proceedings of the 2018 World Wide Web Conference, pp.
187
196
.
45.
Wang
,
L.
,
Chan
,
Y.-C.
,
Ahmed
,
F.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Chen
,
W.
,
2020
, “
Deep Generative Modeling for Mechanistic-Based Learning and Design of Metamaterial Systems
,”
Comput. Methods. Appl. Mech. Eng.
,
372
, p.
113377
.
46.
Li
,
X.
,
Ning
,
S.
,
Liu
,
Z.
,
Yan
,
Z.
,
Luo
,
C.
, and
Zhuang
,
Z.
,
2020
, “
Designing Phononic Crystal With Anticipated Band Gap Through a Deep Learning Based Data-Driven Method
,”
Comput. Methods. Appl. Mech. Eng.
,
361
, p.
112737
.
47.
Guo
,
T.
,
Lohan
,
D. J.
,
Cang
,
R.
,
Ren
,
M. Y.
, and
Allison
,
J. T.
,
2018
, “
An Indirect Design Representation for Topology Optimization Using Variational Autoencoder and Style Transfer
,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p.
0804
.
48.
Champion
,
K.
,
Lusch
,
B.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2019
, “
Data-driven Discovery of Coordinates and Governing Equations
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
45
), pp.
22445
22451
.
49.
Noh
,
J.
,
Kim
,
J.
,
Stein
,
H. S.
,
Sanchez-Lengeling
,
B.
,
Gregoire
,
J. M.
,
Aspuru-Guzik
,
A.
, and
Jung
,
Y.
,
2019
, “
Inverse Design of Solid-state Materials Via a Continuous Representation
,”
Matter
,
1
(
5
), pp.
1370
1384
.
50.
Schmidhuber
,
J.
,
2015
, “
Deep Learning in Neural Networks: An Overview
,”
Neural Netw.
,
61
, pp.
85
117
.
51.
Doersch
,
C.
,
2016
, “Tutorial on Variational Autoencoders,” https://arxiv.org/abs/1606.05908.
52.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge
.
53.
Fournier
,
Q.
, and
Aloise
,
D.
,
2019
, “
Empirical Comparison Between Autoencoders and Traditional Dimensionality Reduction Methods
,” 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE),
IEEE
, pp.
211
214
.
54.
Dommaraju
,
N.
,
Bujny
,
M.
,
Menzel
,
S.
,
Olhofer
,
M.
, and
Duddeck
,
F.
,
2023
, “
Evaluation of Geometric Similarity Metrics for Structural Clusters Generated Using Topology Optimization
,”
Appl. Intell.
,
53
(
1
), pp.
904
929
.
55.
Kingma
,
D. P.
, and
Ba
,
J. L.
,
2015
, “
Adam: A Method for Stochastic Optimization
,” 3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, International Conference on Learning Representations, ICLR.
56.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
, and
Killeen
,
T.
, et al.,
2019
, “PyTorch: An Imperative Style, High-Performance Deep Learning Library,”
Advances in Neural Information Processing Systems
, Vol.
32
,
Curran Associates Inc.
, pp.
8024
8035
.
57.
Welzl
,
E.
,
2005
, “Smallest Enclosing Disks (Balls and Ellipsoids),”
New Results and New Trends in Computer Science: Graz, Austria, June 20–21, 1991 Proceedings
,
Springer
, pp.
359
370
.
58.
Gao
,
H.
,
Breitkopf
,
P.
,
Coelho
,
R. F.
, and
Xiao
,
M.
,
2018
, “
Categorical Structural Optimization Using Discrete Manifold Learning Approach and Custom-Built Evolutionary Operators
,”
Struct. Multidiscipl. Optim.
,
58
(
1
), pp.
215
228
.
59.
TIMKEN
,
2023
, “Timken Ball Bearings Catalog,” https://catalog.timken.com/Ball-Bearings-Catalog/C/#, Accessed March 8, 2023.
60.
McMaster-Carr
,
2024
, “McMaster-Carr Compression Springs,” https://www.mcmaster.com/products/bearings/, Accessed May 1, 2024.
61.
GE Motors
,
2023
, “Ge Motors Wolong—Products,” https://www.gemotorswolong.com/products, Accessed March 8, 2023.
62.
FDK Corporation
,
2023
, “Lithium Ion Battery Data Sheet,” https://www.fdk.com/battery/cat/FDK_battery_en.pdf, Accessed March 8, 2023.
63.
McMaster-Carr
,
2023
, “McMaster-Carr: Oil,” https://www.mcmaster.com/products/oil/, Accessed November 2, 2023.
65.
Chandrasekhar
,
A.
,
Sridhara
,
S.
, and
Suresh
,
K.
,
2022
, “
Integrating Material Selection With Design Optimization Via Neural Networks
,”
Eng. Comput.
,
38
(
5
), pp.
4715
4730
.
66.
Agresti
,
A.
,
2012
,
Categorical Data Analysis
, Vol.
792
,
John Wiley & Sons
,
Hoboken, NJ
.
67.
Seger
,
C.
,
2018
, “
An Investigation of Categorical Variable Encoding Techniques in Machine Learning: Binary Versus One-Hot and Feature Hashing
,” https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1259073&dswid=-2438, Accessed March 8, 2023.
68.
Pereira
,
R. C.
,
Santos
,
M. S.
,
Rodrigues
,
P. P.
, and
Abreu
,
P. H.
,
2020
, “
Reviewing Autoencoders for Missing Data Imputation: Technical Trends, Applications and Outcomes
,”
J. Artif. Intell. Res.
,
69
, pp.
1255
1285
.
69.
Tripp
,
A.
,
Daxberger
,
E.
, and
Hernández-Lobato
,
J. M.
,
2020
, “
Sample-Efficient Optimization in the Latent Space of Deep Generative Models Via Weighted Retraining
,”
Adv. Neural Inf. Process. Syst.
,
33
, pp.
11259
11272
.
70.
Notin
,
P.
,
Hernández-Lobato
,
J. M.
, and
Gal
,
Y.
,
2021
, “
Improving Black-Box Optimization in Vae Latent Space Using Decoder Uncertainty
,”
Adv. Neural Inf. Process. Syst.
,
34
, pp.
802
814
.
71.
Shigley
,
J. E.
,
Mitchell
,
L. D.
, and
Saunders
,
H.
,
1985
, “
Mechanical Engineering Design (4th Ed.)
,”
J. Mech., Transmissions, Autom. Des.
,
107
(
2
), pp.
145
145
.
72.
Doersch
,
C.
,
2016
, “Tutorial on Variational Autoencoders,” arXiv preprint arXiv:1606.05908.
73.
Razavi
,
A.
,
Van den Oord
,
A.
, and
Vinyals
,
O.
,
2019
, “Generating Diverse High-Fidelity Images With VQ-VAE-2,”
Advances in Neural Information Processing Systems
, Vol.
32
.
74.
Graving
,
J. M.
, and
Couzin
,
I. D.
,
2020
, “
VAE-SNE: A Deep Generative Model for Simultaneous Dimensionality Reduction and Clustering
,”
BioRxiv
2020–07
.
75.
Jain
,
A.
,
Ong
,
S. P.
,
Hautier
,
G.
,
Chen
,
W.
,
Richards
,
W. D.
,
Dacek
,
S.
, and
Cholia
,
S.
, et al.,
2013
, “
Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation
,”
APL. Mater.
,
1
(
1
), p.
011002
.
76.
Spinner
,
T.
,
Körner
,
J.
,
Görtler
,
J.
, and
Deussen
,
O.
,
2018
, “
Towards an Interpretable Latent Space: An Intuitive Comparison of Autoencoders With Variational Autoencoders
,” IEEE VIS 2018.
77.
Leung
,
F. H.-F.
,
Lam
,
H.-K.
,
Ling
,
S.-H.
, and
Tam
,
P. K.-S.
,
2003
, “
Tuning of the Structure and Parameters of a Neural Network Using an Improved Genetic Algorithm
,”
IEEE Trans. Neural Netw.
,
14
(
1
), pp.
79
88
.
78.
Hou
,
X.
,
Shen
,
L.
,
Sun
,
K.
, and
Qiu
,
G.
,
2017
, “
Deep Feature Consistent Variational Autoencoder
,” 2017 IEEE Winter Conference on Applications of Computer Vision (WACV),
IEEE
, pp.
1133
1141
.
79.
Chandrasekhar
,
A.
,
Sridhara
,
S.
, and
Suresh
,
K.
,
2021
, “
Auto: A Framework for Automatic Differentiation in Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
64
(
6
), pp.
4355
4365
.
80.
Suresh
,
K.
,
2021
,
Design Optimization using MATLAB and SOLIDWORKS
,
Cambridge University Press
,
Cambridge
.
81.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
82.
Rios
,
T.
,
van Stein
,
B.
,
Bäck
,
T.
,
Sendhoff
,
B.
, and
Menzel
,
S.
,
2021
, “
Multitask Shape Optimization Using a 3-D Point Cloud Autoencoder as Unified Representation
,”
IEEE Trans. Evol. Comput.
,
26
(
2
), pp.
206
217
.
83.
Bostanabad
,
R.
,
Chan
,
Y.-C.
,
Wang
,
L.
,
Zhu
,
P.
, and
Chen
,
W.
,
2019
, “
Globally Approximate Gaussian Processes for Big Data With Application to Data-Driven Metamaterials Design
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111402
.
84.
Wang
,
L.
,
Tao
,
S.
,
Zhu
,
P.
, and
Chen
,
W.
,
2021
, “
Data-Driven Topology Optimization With Multiclass Microstructures Using Latent Variable Gaussian process
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031708
.
85.
Saha
,
S.
,
Minku
,
L. L.
,
Yao
,
X.
,
Sendhoff
,
B.
, and
Menzel
,
S.
,
2022
, “
Exploiting 3D Variational Autoencoders for Interactive Vehicle Design
,”
Proc. Des. Soc.
,
2
, pp.
1747
1756
.
86.
Kvalheim
,
O. M.
, and
Karstang
,
T. V.
,
1989
, “
Interpretation of Latent-Variable Regression Models
,”
Chemom. Intell. Lab. Syst.
,
7
(
1–2
), pp.
39
51
.
87.
O’Mahony
,
N.
,
Awasthi
,
A.
,
Walsh
,
J.
, and
Riordan
,
D.
,
2022
, “
Latent Space Cartography for Geometrically Enriched Latent Spaces
,” Irish Conference on Artificial Intelligence and Cognitive Science,
Springer
, pp.
488
501
.
88.
Liu
,
Y.
,
Jun
,
E.
,
Li
,
Q.
, and
Heer
,
J.
,
2019
, “
Latent Space Cartography: Visual Analysis of Vector Space Embeddings
,”
Comput. Graph. Forum (Proc. EuroVis)
,
38
(
3
), pp.
67
78
.
89.
Lew
,
A. J.
, and
Buehler
,
M. J.
,
2021
, “
Encoding and Exploring Latent Design Space of Optimal Material Structures via a VAE-LSTM model
,”
Forces Mech.
,
5
, p.
100054
.
90.
Klys
,
J.
,
Snell
,
J.
, and
Zemel
,
R.
,
2018
, “
Learning Latent Subspaces in Variational Autoencoders
,”
Advances in Neural Information Processing Systems
, Vol.
31
.
91.
Matejka
,
J.
,
Glueck
,
M.
,
Bradner
,
E.
,
Hashemi
,
A.
,
Grossman
,
T.
, and
Fitzmaurice
,
G.
,
2018
, “
Dream Lens: Exploration and Visualization of Large-Scale Generative Design Datasets
,” Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp.
1
12
.
You do not currently have access to this content.