Abstract

Additive manufacturing (AM) can produce designs in a manner that greatly differs from the methods used in the older, more familiar technologies of traditional manufacturing (TM). As an example, AM's layer-by-layer approach to manufacturing designs can lead to the production of intricate geometries and make use of multiple materials, made possible without added manufacturing cost and time due to AM's “free complexity.” Despite this contrasting method for manufacturing designs, designers often forgo the new design considerations for AM (AM design heuristics). Instead, they rely on their familiarity with the design considerations for TM (TM design heuristics) regardless of the intended manufacturing process. For designs that are intended to be manufactured using AM, this usage of TM design considerations is wasteful as it leads to unnecessary material usage, increased manufacturing time, and can result in designs that are poorly manufactured. To remedy this problem, there is a need to intervene early in the design process to help address any concerns regarding the use of AM design heuristics. This work aims to address this opportunity through a preliminary exploration of the design heuristics that students naturally leverage when creating designs in the context of TM and AM. In this study, 117 students in an upper-level engineering design course were given an open-ended design challenge and later tasked with self-evaluating their designs for their manufacturability with TM and AM. This evaluation of the students' designs was later repeated by relevant experts, who would identify the common design heuristics that students are most likely to use in their designs. Future studies will build on these findings by cementing early-stage design support tools that emphasize the significant heuristics found herein. For example, this work found that the design heuristic “incorporating complexity” was the most significant indicator of designs most suited for AM and should therefore be highly encouraged/emphasized when guiding designers in the use of AM. In doing so, it will be possible for early-stage design support tools to maximally improve designs that are intended to be manufactured for AM.

References

1.
Pereira
,
T.
,
Kennedy
,
J. V.
, and
Potgieter
,
J.
,
2019
, “
A Comparison of Traditional Manufacturing vs Additive Manufacturing, the Best Method for the Job
,”
Procedia Manuf.
,
30
, pp.
11
18
.
2.
Cuellar
,
J. S.
,
Smit
,
G.
,
Plettenburg
,
D.
, and
Zadpoor
,
A.
,
2018
, “
Additive Manufacturing of Non-Assembly Mechanisms
,”
Addit. Manuf.
,
21
, pp.
150
158
.
3.
Lussenburg
,
K.
,
Sakes
,
A.
, and
Breedveld
,
P.
,
2021
, “
Design of Non-Assembly Mechanisms: A State-of-the-Art Review
,”
Addit. Manuf.
,
39
, p.
101846
.
4.
Campbell
,
I.
,
Bourell
,
D.
, and
Gibson
,
I.
,
2012
, “
Additive Manufacturing: Rapid Prototyping Comes of Age
,”
Rapid Prototyp. J.
,
18
(
4
), pp.
255
258
.
5.
Wong
,
K. V.
, and
Hernandez
,
A.
,
2012
, “
A Review of Additive Manufacturing
,”
Int. Sch. Res. Not.
,
2012
, pp.
1
10
.
6.
Herrmann
,
J. W.
,
Cooper
,
J.
,
Gupta
,
S. K.
,
Hayes
,
C. C.
,
Ishii
,
K.
,
Kazmer
,
D.
,
Sandborn
,
P. A.
, and
Wood
,
W. H.
,
2004
, “
New Directions in Design for Manufacturing
,”
ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
, pp.
853
861
.
7.
Bralla
,
J. G.
,
1999
,
Design for Manufacturability Handbook
,
McGraw-Hill Education
,
New York
.
8.
Laverne
,
F.
,
Segonds
,
F.
,
Anwer
,
N.
, and
Le Coq
,
M.
,
2015
, “
Assembly Based Methods to Support Product Innovation in Design for Additive Manufacturing: An Exploratory Case Study
,”
ASME J. Mech. Des.
,
137
(
12
), p.
121701
.
9.
Schauer
,
A. M.
,
Fillingim
,
K. B.
, and
Fu
,
K.
,
2022
, “
Impact of Timing in the Design Process on Students' Application of Design for Additive Manufacturing Heuristics
,”
ASME J. Mech. Des.
,
144
(
6
), p.
062301
.
10.
Li
,
Y.
,
Wang
,
J.
,
Li
,
X.
, and
Zhao
,
W.
,
2007
, “
Design Creativity in Product Innovation
,”
Int. J. Adv. Manuf. Technol.
,
33
(
3–4
), pp.
213
222
.
11.
Pearl
,
S.
, and
Meisel
,
N.
,
2022
, “
Assessing the Manufacturability of Students' Early-Stage Designs Based on Previous Experience With Traditional Manufacturing and Additive Manufacturing
,”
Volume 3A: 48th Design Automation Conference (DAC), American Society of Mechanical Engineers
,
St. Louis, MO
,
Aug. 14–17
.
12.
Pearl
,
S.
, and
Meisel
,
N. A.
,
2024
, “
Assessing the Manufacturability of Students' Early-Stage Designs Based on Previous Experience With Traditional Manufacturing and Additive Manufacturing
,”
ASME J. Mech. Des.
,
146
(
1
), p.
012301
.
13.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “
(Re) Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
.
14.
Zhang
,
F.
,
Campbell
,
R. I.
, and
Graham
,
I. J.
,
2016
, “
Application of Additive Manufacturing to the Digital Restoration of Archaeological Artefacts
,”
Int. J. Rapid Manuf.
,
6
(
1
), pp.
75
94
.
15.
Booth
,
J. W.
,
Alperovich
,
J.
,
Chawla
,
P.
,
Ma
,
J.
,
Reid
,
T. N.
, and
Ramani
,
K.
,
2017
, “
The Design for Additive Manufacturing Worksheet
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100904
.
16.
Lough
,
K. G.
,
Stone
,
R.
, and
Tumer
,
I. Y.
,
2009
, “
The Risk in Early Design Method
,”
J. Eng. Des.
,
20
(
2
), pp.
155
173
.
17.
Pucha
,
R.
,
Levy
,
B.
,
Linsey
,
J. S.
,
Newton
,
S. H.
,
Alemdar
,
M.
, and
Utschig
,
T.
,
2017
, “
Assessing Concept Generation Intervention Strategies for Creativity Using Design Problems in a Freshman Engineering Graphics Course
,”
24th ASEE Annual Conference and Exposition
,
Columbus, OH
,
June 25–28
.
18.
Prabhu
,
R.
,
Simpson
,
T. W.
,
Miller
,
S. R.
, and
Meisel
,
N. A.
,
2021
, “
Break It Down: Comparing the Effects of Lecture- and Module-Style Design for Additive Manufacturing Educational Interventions on Students’ Learning and Creativity
,”
Volume 4: 18th International Conference on Design Education (DEC), American Society of Mechanical Engineers
,
Virtual, Online
,
Aug. 17–19
.
19.
Prabhu
,
R.
,
Simpson
,
T. W.
,
Miller
,
S. R.
,
Cutler
,
S. L.
, and
Meisel
,
N. A.
,
2023
, “
Teaching Designing for Additive Manufacturing: Formulating Educational Interventions That Encourage Design Creativity
,”
3D Print. Addit. Manuf.
,
10
(
2
), pp.
356
372
.
20.
Dale
,
S.
,
2015
, “
Heuristics and Biases: The Science of Decision-Making
,”
Bus. Inf. Rev.
,
32
(
2
), pp.
93
99
.
21.
Kim
,
H.
,
2010
, “
Effective Organization of Design Guidelines Reflecting Designer's Design Strategies
,”
Int. J. Ind. Ergon
,
40
(
6
), pp.
669
688
.
22.
Ammar
,
A. A.
,
Scaravetti
,
D.
, and
Nadeau
,
J.-P.
,
2010
, “
A Heuristic Method for Functional Aggregation Within the Design Process
,”
Proceedings of IDMME—Virtual Concept
,
Bordeau, France
,
Oct. 20–22
, pp.
20
22
.
23.
Grotehen
,
T.
, and
Dittrich
,
K. R.
,
1997
,
The Methood Approach: Measures, Transformation Rules and Heuristics for Object-Oriented Design
,
Citeseer
,
University Park, PA
.
24.
Arnott
,
D.
,
2006
, “
Cognitive Biases and Decision Support Systems Development: A Design Science Approach
,”
Inf. Syst. J.
,
16
(
1
), pp.
55
78
.
25.
Fu
,
K. K.
,
Yang
,
M. C.
, and
Wood
,
K. L.
,
2016
, “
Design Principles: Literature Review, Analysis, and Future Directions
,”
ASME J. Mech. Des.
,
138
(
10
), p.
101103
.
26.
Figueiredo
,
E.
,
Sant’Anna
,
C.
,
Garcia
,
A.
, and
Lucena
,
C.
,
2012
, “
Applying and Evaluating Concern-Sensitive Design Heuristics
,”
J. Syst. Softw.
,
85
(
2
), pp.
227
243
.
27.
Leahy
,
K.
,
Daly
,
S. R.
,
Murray
,
J. K.
,
McKilligan
,
S.
, and
Seifert
,
C. M.
,
2019
, “
Transforming Early Concepts With Design Heuristics
,”
Int. J. Technol. Des. Educ.
,
29
(
4
), pp.
759
779
.
28.
Daly
,
S. R.
,
McKilligan
,
S.
,
Leahy
,
K.
, and
Seifert
,
C. M.
,
2019
, “Teaching Design Innovation Skills: Design Heuristics Support Creating, Developing, and Combining Ideas,”
Design Education Today: Technical Contexts, Programs and Best Practices
,
Springer
,
Cham
, pp.
37
60
.
29.
Yilmaz
,
S.
, and
Seifert
,
C. M.
,
2011
, “
Creativity Through Design Heuristics: A Case Study of Expert Product Design
,”
Des. Stud.
,
32
(
4
), pp.
384
415
.
30.
Daly
,
S. R.
,
Yilmaz
,
S.
,
Christian
,
J. L.
,
Seifert
,
C. M.
, and
Gonzalez
,
R.
,
2012
, “
Design Heuristics in Engineering Concept Generation
,”
J. Eng. Educ.
,
101
(
4), pp.
601
629
.
31.
Jänsch
,
J.
, and
Birkhofer
,
H.
,
2006
, “
DESIGN 2006
,”
9th International Design Conference
,
Dubrovnik, Croatia
,
May 15–18
.
32.
Yilmaz
,
S.
, and
Daly
,
S. R.
, “
10th Design Thinking Research Symposium
,”
Design Thinking Research Symposium 2014
,
West Lafayette, IN
,
Oct. 12–15
.
33.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Teaching Design Freedom: Understanding the Effects of Variations in Design for Additive Manufacturing Education on Students' Creativity
,”
ASME J. Mech. Des.
,
142
(
9
), p.
094501
.
34.
Fera
,
M.
,
Macchiaroli
,
R.
,
Fruggiero
,
F.
, and
Lambiase
,
A.
,
2018
, “
A New Perspective for Production Process Analysis Using Additive Manufacturing—Complexity vs Production Volume
,”
Int. J. Adv. Manuf. Technol.
,
95
(
1–4
), pp.
673
685
.
35.
Blösch-Paidosh
,
A.
, and
Shea
,
K.
,
2017
, “
Design Heuristics for Additive Manufacturing
,”
DS 87-5 Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 5: Design for X,Design to X
,
Vancouver, Canada
,
Aug. 21–25
, pp.
091
100
.
36.
Blösch-Paidosh
,
A.
, and
Shea
,
K.
,
2019
, “
Design Heuristics for Additive Manufacturing Validated Through a User Study
,”
ASME J. Mech. Des.
,
141
(
4
), p.
041101
.
37.
Mahan
,
T.
,
Stover
,
M.
,
Arguelles
,
A.
, and
Menold
,
J.
,
2020
, “
Creating a Design for Inspectability Framework: Investigating DfAM Heuristics for Inspection Technologies
,”
Volume 8: 32nd International Conference on Design Theory and Methodology (DTM), American Society of Mechanical Engineers
,
Virtual Online
,
Aug. 17–19
.
38.
Fazelpour
,
M.
,
Shankar
,
P.
, and
Summers
,
J. D.
,
2019
, “
A Unit Cell Design Guideline Development Method for Meso-Scaled Periodic Cellular Material Structures
,”
ASME J. Eng. Mater. Technol.
,
141
(
4
), p.
041004
.
39.
Blösch-Paidosh
,
A.
,
Ahmed-Kristensen
,
S.
, and
Shea
,
K.
,
2019
, “
Evaluating the Potential of Design for Additive Manufacturing Heuristic Cards to Stimulate Novel Product Redesigns
,”
Volume 2A: 45th Design Automation Conference
,
Anaheim, CA
,
Aug. 18–21
.
40.
Blösch-Paidosh
,
A.
, and
Shea
,
K.
,
2021
, “
Enhancing Creative Redesign Through Multimodal Design Heuristics for Additive Manufacturing
,”
ASME J. Mech. Des.
,
143
(
10
), p.
102003
.
41.
Valjak
,
F.
, and
Lindwall
,
A.
,
2021
, “
Review of Design Heuristics and Design Principles in Design for Additive Manufacturing
,”
Proc. Des. Soc.
,
1
, pp.
2571
2580
.
42.
Budinoff
,
H. D.
, and
McMains
,
S.
,
2021
, “
Will It Print: A Manufacturability Toolbox for 3D Printing
,”
Int. J. Interact. Des. Manuf. IJIDeM
,
15
(
4
), pp.
613
630
.
43.
Tversky
,
A.
, and
Kahneman
,
D.
,
1981
, “
The Framing of Decisions and the Psychology of Choice
,”
Science
,
211
(
4481
), pp.
453
458
.
44.
Sinha
,
S.
,
Chen
,
H.-E.
,
Meisel
,
N. A.
, and
Miller
,
S. R.
,
2017
, “
Does Designing for Additive Manufacturing Help Us Be More Creative? An Exploration in Engineering Design Education
,”
Volume 3: 19th International Conference on Advanced Vehicle Technologies; 14th International Conference on Design Education; 10th Frontiers in Biomedical Devices, American Society of Mechanical Engineers
,
Cleveland, OH
.
45.
Linsey
,
J. S.
,
Tseng
,
I.
,
Fu
,
K.
,
Cagan
,
J.
,
Wood
,
K. L.
, and
Schunn
,
C.
,
2010
, “
A Study of Design Fixation, Its Mitigation and Perception in Engineering Design Faculty
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041003
.
46.
Viswanathan
,
V. K.
, and
Linsey
,
J. S.
,
2013
, “
Design Fixation and Its Mitigation: A Study on the Role of Expertise
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051008
.
47.
Prabhu
,
R.
,
Masia
,
J. S.
,
Berthel
,
J. T.
,
Meisel
,
N. A.
, and
Simpson
,
T. W.
,
2021
, “
Maximizing Design Potential: Investigating the Effects of Utilizing Opportunistic and Restrictive Design for Additive Manufacturing in Rapid Response Solutions
,”
Rapid Prototyp. J.
,
27
(
6
), pp.
1161
1171
.
48.
Kulak
,
O.
,
Cebi
,
S.
, and
Kahraman
,
C.
,
2010
, “
Applications of Axiomatic Design Principles: A Literature Review
,”
Expert Syst. Appl.
,
37
(
9
), pp.
6705
6717
.
49.
Suh
,
N. P.
, and
Sekimoto
,
S.
,
1990
, “
Design of Thinking Design Machine
,”
CIRP Ann.
,
39
(
1
), pp.
145
148
.
50.
Pearl
,
S.
, and
Meisel
,
N.
,
2023
, “
Exploring the Manifestation of Design for Manufacturing Axioms in Students’ Early-Stage Engineering Design Concepts
,”
Volume 4: 20th International Conference on Design Education (DEC), American Society of Mechanical Engineers
,
Boston, MA
,
Aug. 20–23
.
51.
Kostons
,
D.
,
Van Gog
,
T.
, and
Paas
,
F.
,
2009
, “
How Do I Do? Investigating Effects of Expertise and Performance-Process Records on Self-Assessment
,”
Appl. Cogn. Psychol. Off. J. Soc. Appl. Res. Mem. Cogn.
,
23
(
9
), pp.
1256
1265
.
52.
Yang
,
M. C.
,
2009
, “
Observations on Concept Generation and Sketching in Engineering Design
,”
Res. Eng. Des.
,
20
, pp.
1
11
.
53.
Gillespie
,
L.
,
1980
,
Deburring: Technical Capabilities and Cost-Effective Approaches. Lessons 5 and 6
,
Bendix Corp.
,
Kansas City, MO
.
54.
Joshi
,
A.
,
Kale
,
S.
,
Chandel
,
S.
, and
Pal
,
D. K.
,
2015
, “
Likert Scale: Explored and Explained
,”
Br. J. Appl. Sci. Technol.
,
7
(
4
), p.
396
403
.
55.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Exploring the Effects of Additive Manufacturing Education on Students' Engineering Design Process and Its Outcomes
,”
ASME J. Mech. Des.
,
142
(
4
), p.
042001
.
56.
Prabhu
,
R.
,
Leguarda
,
R. L.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2021
, “
Favoring Complexity: A Mixed Methods Exploration of Factors That Influence Concept Selection When Designing for Additive Manufacturing
,”
ASME J. Mech. Des.
,
143
(
10
), p.
102001
.
57.
Krathwohl
,
D. R.
,
Bloom
,
B. S.
, and
Masia
,
B. B.
,
1966
,
Taxonomy of Educational Objectives: The Classification of Educational Goals
,
David McKay
,
Philadelphia, PA
.
58.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2018
, “
The Earlier the Better? Investigating the Importance of Timing on Effectiveness of Design for Additive Manufacturing Education
,”
Volume 2A: 44th Design Automation Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
, American Society of Mechanical Engineers.
59.
Prabhu
,
R.
,
Simpson
,
T. W.
,
Miller
,
S. R.
, and
Meisel
,
N. A.
,
2022
, “
Development and Validity Evidence Investigation of a Design for Additive Manufacturing Self-Efficacy Scale
,”
Res. Eng. Des.
,
33
(
4
), pp.
437
453
.
60.
Prabhu
,
R.
,
Bracken
,
J.
,
Armstrong
,
C. B.
,
Jablokow
,
K.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Additive Creativity: Investigating the Use of Design for Additive Manufacturing to Encourage Creativity in the Engineering Design Industry
,”
Int. J. Des. Creat. Innov.
,
8
(
4
), pp.
198
222
.
61.
Williams
,
C. B.
, and
Seepersad
,
C. C.
,
2012
, “
Design for Additive Manufacturing Curriculum: A Problem- and Project-Based Approach
,”
23rd Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8
.
62.
Kudrowitz
,
B.
,
Te
,
P.
, and
Wallace
,
D.
,
2012
, “
The Influence of Sketch Quality on Perception of Product-Idea Creativity
,”
AI EDAM
,
26
(
3
), pp.
267
279
.
63.
Linsey
,
J. S.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2008
, “
Modality and Representation in Analogy
,”
Ai Edam
,
22
(
2
), pp.
85
100
.
64.
Amabile
,
T. M.
,
1982
, “
Social Psychology of Creativity: A Consensual Assessment Technique
,”
J. Pers. Soc. Psychol.
,
43
(
5
), p.
997
1013
.
65.
Baer
,
J.
, and
McKool
,
S.
,
2009
, “Assessing Creativity Using the Consensual Assessment Technique,”
Handbook of Research on Assessment Technologies, Methods and Applications, Higher Education
,
IGI Global
,
Hershey, PA
, pp.
65
77
.
66.
Bartko
,
J. J.
,
1966
, “
The Intraclass Correlation Coefficient as a Measure of Reliability
,”
Psychol. Rep.
,
19
(
1
), pp.
3
11
.
67.
Weir
,
J. P.
,
2005
, “
Quantifying Test-Retest Reliability Using the Intraclass Correlation Coefficient and the SEM
,”
J. Strength Cond. Res.
,
19
(
1
), pp.
231
240
.
68.
Fleiss
,
J. L.
, and
Cohen
,
J.
,
1973
, “
The Equivalence of Weighted Kappa and the Intraclass Correlation Coefficient as Measures of Reliability
,”
Educ. Psychol. Meas.
,
33
(
3
), pp.
613
619
.
69.
Lee
,
J.
,
Koh
,
D.
, and
Ong
,
C.
,
1989
, “
Statistical Evaluation of Agreement Between Two Methods for Measuring a Quantitative Variable
,”
Comput. Biol. Med.
,
19
(
1
), pp.
61
70
.
70.
Woolson
,
R. F.
,
2008
,
Wiley Encyclopedia of Clinical Trials
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
, pp.
1
3
.
71.
Hanusz
,
Z.
,
Tarasinska
,
J.
, and
Zielinski
,
W.
,
2016
, “
Shapiro–Wilk Test With Known Mean
,”
REVSTAT-Stat. J.
,
14
(
1
), pp.
89
100
.
72.
Ngo
,
T. H. D.
, and
La Puente
,
C.
,
2012
,
The Steps to Follow in a Multiple Regression Analysis
,
Citeseer
,
University Park, PA
, pp.
22
25
.
73.
Ali
,
P. J. M.
,
Faraj
,
R. H.
,
Koya
,
E.
,
Ali
,
P. J. M.
, and
Faraj
,
R. H.
,
2014
, “
Data Normalization and Standardization: A Technical Report
,”
Mach. Learn Tech. Rep.
,
1
(
1
), pp.
1
6
.
74.
Barrett
,
G. B.
,
2000
, “
The Coefficient of Determination: Understanding r Squared and R Squared
,”
Math. Teach.
,
93
(
3
), pp.
230
234
.
75.
Gordon
,
M. J.
,
1991
, “
A Review of the Validity and Accuracy of Self-Assessments in Health Professions Training
,”
Acad. Med.
,
66
(
12
), pp.
762
769
.
76.
Liao
,
T.
, and
MacDonald
,
E. F.
,
2021
, “
Priming on Sustainable Design Idea Creation and Evaluation
,”
Sustainability
,
13
(
9
), p.
5227
.
77.
Abadel
,
F. T.
, and
Hattab
,
A. S.
,
2013
, “
How Does the Medical Graduates' Self-Assessment of Their Clinical Competency Differ From Experts' Assessment?
,”
BMC Med. Educ.
,
13
, pp.
1
9
.
78.
Jiang
,
S.-F.
,
Chen
,
S.
,
Lu
,
C.-D.
, and
Huang
,
J.-M.
,
2011
, “
Integration of Capturing Design Intent and Parametric Design
,”
Comput. Integr. Manuf. Syst.
,
17
(
4
), p.
726
731
.
79.
Ardayfio
,
M. A.
,
1998
, “Methods for Capturing Design Intent Using Key Characteristics,”
MSc. thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
, pp.
95
97
.
80.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
But Will It Build? Assessing Student Engineering Designers' Use of Design for Additive Manufacturing Considerations in Design Outcomes
,”
ASME J. Mech. Des.
,
142
(
9
), p.
092001
.
81.
Paris
,
H.
, and
Mandil
,
G.
,
2018
, “
The Development of a Strategy for Direct Part Reuse Using Additive and Subtractive Manufacturing Technologies
,”
Addit. Manuf.
,
22
, pp.
687
699
.
82.
Singh
,
V.
,
Skiles
,
S. M.
,
Krager
,
J. E.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Sierakowski
,
R.
,
2009
, “
Innovations in Design Through Transformation: A Fundamental Study of Transformation Principles
,”
ASME J. Mech. Des.
,
131
(
8
), p.
081010
.
83.
Perez
,
A.
,
Linsey
,
J.
,
Tsenn
,
J.
, and
Glier
,
M.
,
2011
, “
Identifying Product Scaling Principles: A Step Towards Enhancing Biomimetic Design
,”
Volume 2: Biomedical and Biotechnology Engineering; Nanoengineering for Medicine and Biology, American Society of Mechanical Engineers
,
Denver, CO
,
Nov. 11–17
, pp.
789
798
.
84.
Telenko
,
C.
, and
Seepersad
,
C. C.
,
2010
, “
A Methodology for Identifying Environmentally Conscious Guidelines for Product Design
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091009
.
85.
Campbell
,
R. D.
,
Lewis
,
P. K.
, and
Mattson
,
C. A.
,
2011
, “
A Method for Identifying Design Principles for the Developing World
,”
Volume 5: 37th Design Automation Conference, Parts A and B, American Society of Mechanical Engineers
,
Washington, DC
,
Aug. 28–31
, pp.
453
460
.
86.
Clancey
,
W. J.
,
1985
, “
Heuristic Classification
,”
Artif. Intell.
,
27
(
3
), pp.
289
350
.
87.
Cormier
,
P.
,
Literman
,
B.
, and
Lewis
,
K.
,
2011
, “
Empirically Derived Heuristics to Assist Designers with Satisfying Consumer Variation in Product Design
,”
Volume 9: 23rd International Conference on Design Theory and Methodology; 16th Design for Manufacturing and the Life Cycle Conference
,
Washington, DC
,
Aug. 28–31
, pp.
341
353
.
88.
Daly
,
S.
,
Yilmaz
,
S.
,
Seifert
,
C.
, and
Gonzalez
,
R.
,
2010
, “
Cognitive Heuristic Use in Engineering Design Ideation
,”
2010 Annual Conference & Exposition of the American Society for Engineering Education
,
Louisville, KY
,
June 20–23
, pp.
15
282
.
89.
Weaver
,
J. M.
,
Wood
,
K. L.
, and
Jensen
,
D.
,
2008
, “
Transformation Facilitators: A Quantitative Analysis of Reconfigurable Products and Their Characteristics
,”
Volume 1: 34th Design Automation Conference, Parts A and B
,
Brooklyn, NY
,
Aug. 3–6
, pp.
351
366
.
90.
Beyer
,
C.
, and
Figueroa
,
D.
,
2016
, “
Design and Analysis of Lattice Structures for Additive Manufacturing
,”
J. Manuf. Sci. Eng.
,
138
(
12
), p.
121014
.
91.
Popov
,
D.
,
Maltsev
,
E.
,
Fryazinov
,
O.
,
Pasko
,
A.
, and
Akhatov
,
I.
,
2020
, “
Efficient Contouring of Functionally Represented Objects for Additive Manufacturing
,”
Comput.-Aided Des.
,
129
, p.
102917
.
92.
Yang
,
S.
,
Page
,
T.
, and
Zhao
,
Y. F.
,
2019
, “
Understanding the Role of Additive Manufacturing Knowledge in Stimulating Design Innovation for Novice Designers
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021703
.
93.
Beuth
,
J. L.
, and
Narayan
,
S.
,
1996
, “
Residual Stress-Driven Delamination in Deposited Multi-Layers
,”
Int. J. Solids Struct.
,
33
(
1
), pp.
65
78
.
94.
Chrysikou
,
E. G.
, and
Weisberg
,
R. W.
,
2005
, “
Following the Wrong Footsteps: Fixation Effects of Pictorial Examples in a Design Problem-Solving Task
,”
J. Exp. Psychol. Learn. Mem. Cogn.
,
31
(
5
), p.
1134
.
You do not currently have access to this content.