Abstract

In the engineering optimization, there often exist the multiple sources of information with different fidelity levels. In general, low-fidelity (LF) information is usually more accessible than high-fidelity (HF) information, while the latter is usually more accurate than the former. Thus, to capitalize on the advantages of this information, this study proposes a novel recursive transfer bifidelity surrogate modeling to fuse information from HF and LF levels. First, the selection method of optimal scale factor is proposed for constructing bifidelity surrogate model. Then, a recursive method is developed to further improve its performance. The efficacy of the proposed model is comprehensively evaluated using numerical problems and an engineering example. Comparative analysis with some surrogate models (five multifidelity and a single-fidelity surrogate models) demonstrates the superior prediction accuracy and robustness of the proposed model. Additionally, the impact of varying cost ratios and combinations of HF and LF samples on the performance of the proposed model is also investigated, yielding consistent results. Overall, the proposed model has superior performance and holds potential for practical applications in engineering design optimization problems.

References

1.
Bhattacharjee
,
K. S.
,
Singh
,
H. K.
, and
Ray
,
T.
,
2018
, “
Multiple Surrogate-Assisted Many-Objective Optimization for Computationally Expensive Engineering Design
,”
ASME J. Mech. Des.
,
140
(
5
), p.
051403
.
2.
Forrester
,
A. I. J.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aerosp. Sci.
,
45
(
1–3
), pp.
50
79
.
3.
Jin
,
Y.
,
2011
, “
Surrogate-Assisted Evolutionary Computation: Recent Advances and Future Challenges
,”
Swarm Evol. Comput.
,
1
(
2
), pp.
61
70
.
4.
Rashki
,
M.
,
Azarkish
,
H.
,
Rostamian
,
M.
, and
Bahrpeyma
,
A.
,
2019
, “
Classification Correction of Polynomial Response Surface Methods for Accurate Reliability Estimation
,”
Struct. Saf.
,
81
, p.
101869
.
5.
Rafiee
,
V.
, and
Faiz
,
J.
,
2019
, “
Robust Design of an Outer Rotor Permanent Magnet Motor Through Six-Sigma Methodology Using Response Surface Surrogate Model
,”
IEEE Trans. Magn.
,
55
(
10
), pp.
1
10
.
6.
Ribeiro
,
L. G.
,
Maia
,
M. A.
, and
Parente
,
J. E.
,
2020
, “
Surrogate Based Optimization of Functionally Graded Plates Using Radial Basis Functions
,”
Compos. Struct.
,
252
, p.
112677
.
7.
Yu
,
M.
,
Liang
,
J.
,
Zhao
,
K.
, and
Wu
,
Z.
,
2022
, “
An aRBF Surrogate-Assisted Neighborhood Field Optimizer for Expensive Problems
,”
Swarm Evol. Comput.
,
68
, p.
100972
.
8.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
.
9.
Xing
,
J.
,
Luo
,
Y.
, and
Gao
,
Z.
,
2020
, “
A Global Optimization Strategy Based on the Kriging Surrogate Model and Parallel Computing
,”
Struct. Multidiscip. Optim.
,
62
(
1
), pp.
405
417
.
10.
Clarke
,
S. M.
,
Griebsch
,
J. H.
, and
Simpson
,
T. W.
,
2004
, “
Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1077
1087
.
11.
Park
,
J.
, and
Kim
,
K. Y.
,
2017
, “
Meta-Modeling Using Generalized Regression Neural Network and Particle Swarm Optimization
,”
Appl. Soft Comput.
,
51
, pp.
354
369
.
12.
White
,
D. A.
,
Arrighi
,
W. J.
,
Kudo
,
J.
, and
Watts
,
S. E.
,
2019
, “
Multiscale Topology Optimization Using Neural Network Surrogate Models
,”
Comput. Meth. Appl. Mech. Eng.
,
346
, pp.
1118
1135
.
13.
Basheer
,
I. A.
, and
Hajmeer
,
M.
,
2000
, “
Artificial Neural Networks: Fundamentals, Computing, Design, and Application
,”
J. Microbiol. Methods
,
43
(
1
), pp.
3
31
.
14.
Haftka
,
R. T.
,
1991
, “
Combining Global and Local Approximations
,”
AIAA J.
,
29
(
9
), pp.
1523
1525
.
15.
Gao
,
H.
,
Zhu
,
X.
, and
Wang
,
J. X.
,
2020
, “
A Bi-Fidelity Surrogate Modeling Approach for Uncertainty Propagation in Three-Dimensional Hemodynamic Simulations
,”
Comput. Meth. Appl. Mech. Eng.
,
366
, p.
113047
.
16.
Lee
,
T.
,
Bilionis
,
I.
, and
Tepole
,
A. B.
,
2020
, “
Propagation of Uncertainty in the Mechanical and Biological Response of Growing Tissues Using Multi-Fidelity Gaussian Process Regression
,”
Comput. Meth. Appl. Mech. Eng.
,
359
, p.
112724
.
17.
Yi
,
J.
,
Wu
,
F.
, and
Zhou
,
Q.
,
2021
, “
An Active-Learning Method Based on Multi-Fidelity Kriging Model for Structural Reliability Analysis
,”
Struct. Multidiscip. Optim.
,
63
(
1
), pp.
173
195
.
18.
Wu
,
J.
,
Tian
,
P.
,
Wang
,
S.
, and
Tao
,
Y.
,
2024
, “
A Multi-Fidelity Integration Method for Reliability Analysis of Industrial Robots
,”
ASME J. Mech. Des.
,
146
(
1
), p.
011703
.
19.
Zhang
,
X.
,
Xie
,
F.
, and
Ji
,
T.
,
2021
, “
Multi-Fidelity Deep Neural Network Surrogate Model for Aerodynamic Shape Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
373
, p.
113485
.
20.
Tao
,
J.
, and
Sun
,
G.
,
2019
, “
Application of Deep Learning Based Multi-Fidelity Surrogate Model to Robust Aerodynamic Design Optimization
,”
Aerosp. Sci. Technol.
,
92
, pp.
722
737
.
21.
Bandler
,
J. W.
,
Biernacki
,
R. M.
, and
Chen
,
S. H.
,
1994
, “
Space Mapping Technique for Electromagnetic Optimization
,”
IEEE Trans. Microwave Theory Tech.
,
42
(
12
), pp.
2536
2544
.
22.
Zheng
,
J.
,
Shao
,
X.
, and
Gao
,
L.
,
2014
, “
A Prior-Knowledge Input LSSVR Metamodeling Method With Tuning Based on Cellular Particle Swarm Optimization for Engineering Design
,”
Expert Syst. Appl.
,
41
(
5
), pp.
2111
2125
.
23.
Jiang
,
P.
,
Xie
,
T.
, and
Zhou
,
Q.
,
2018
, “
A Space Mapping Method Based on Gaussian Process Model for Variable Fidelity Metamodeling
,”
Simul. Modell. Pract. Theory
,
81
, pp.
64
84
.
24.
Zhou
,
Q.
,
Yang
,
Y.
, and
Song
,
X. G.
,
2020
, “
Survey of Multi-Fidelity Surrogate Models and Their Applications in the Design and Optimization of Engineering Equipment
,”
J. Mech. Eng.
,
56
(
24
), pp.
219
245
.
25.
Hutchison
,
M. G.
,
Unger
,
E. R.
, and
Mason
,
W. H.
,
1994
, “
Variable-Complexity Aerodynamic Optimization of a High-Speed Civil Transport Wing
,”
J. Aircr.
,
31
(
1
), pp.
110
116
.
26.
Liu
,
Y.
, and
Collette
,
M.
,
2014
, “
Improving Surrogate-Assisted Variable Fidelity Multi-Objective Optimization Using a Clustering Algorithm
,”
Appl. Soft Comput.
,
24
, pp.
482
493
.
27.
Wang
,
S.
,
Liu
,
Y.
, and
Zhou
,
Q.
,
2021
, “
A Multi-Fidelity Surrogate Model Based on Moving Least Squares: Fusing Different Fidelity Data for Engineering Design
,”
Struct. Multidiscip. Optim.
,
64
(
6
), pp.
3637
3652
.
28.
Absi
,
G. N.
, and
Mahadevan
,
S.
,
2020
, “
Simulation and Sensor Optimization for Multifidelity Dynamics Model Calibration
,”
AIAA J.
,
58
(
2
), pp.
879
888
.
29.
Berci
,
M.
,
Toropov
,
V. V.
,
Hewson
,
R. W.
, and
Gaskell
,
P. H.
,
2014
, “
Multidisciplinary Multifidelity Optimisation of a Flexible Wing Aerofoil With Reference to a Small UAV
,”
Struct. Multidiscip. Optim.
,
50
(
4
), pp.
683
699
.
30.
Gano
,
S. E.
,
Renaud
,
J. E.
,
Martin
,
J. D.
, and
Simpson
,
T. W.
,
2006
, “
Update Strategies for Kriging Models Used in Variable Fidelity Optimization
,”
Struct. Multidiscip. Optim.
,
32
(
4
), pp.
287
298
.
31.
Song
,
X.
,
Lv
,
L.
,
Sun
,
W.
, and
Zhang
,
J.
,
2019
, “
A Radial Basis Function-Based Multi-Fidelity Surrogate Model: Exploring Correlation Between High-Fidelity and Low-Fidelity Models
,”
Struct. Multidiscip. Optim.
,
60
(
3
), pp.
965
981
.
32.
Zhang
,
Y.
,
Kim
,
N. H.
,
Park
,
C.
, and
Haftka
,
R. T.
,
2018
, “
Multifidelity Surrogate Based on Single Linear Regression
,”
AIAA J.
,
56
(
12
), pp.
4944
4952
.
33.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization via Surrogate Modelling
,”
Proc. R. Soc. A
,
463
(
2088
), pp.
3251
3269
.
34.
Li
,
K.
,
Liu
,
Y.
,
Wang
,
S.
, and
Song
,
X.
,
2021
, “
Multifidelity Data Fusion Based on Gradient-Enhanced Surrogate Modeling Method
,”
ASME J. Mech. Des.
,
143
(
12
), p.
121704
.
35.
Sarkar
,
S.
,
Mondal
,
S.
,
Joly
,
M.
,
Lynch
,
M. E.
,
Bopardikar
,
S. D.
,
Acharya
,
R.
, and
Perdikaris
,
P.
,
2019
, “
Multifidelity and Multiscale Bayesian Framework for High-Dimensional Engineering Design and Calibration
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121001
.
36.
Lai
,
X.
,
Pang
,
Y.
,
Liu
,
F.
,
Sun
,
W.
, and
Song
,
X.
,
2024
, “
A Multi-Fidelity Surrogate Model Based on Design Variable Correlations
,”
Adv. Eng. Inf.
,
59
, p.
102248
.
37.
Specht
,
D. F.
,
1991
, “
A General Regression Neural Network
,”
IEEE Trans. Neural Netw.
,
2
(
6
), pp.
568
576
.
38.
Białobrzewski
,
I.
,
2008
, “
Neural Modeling of Relative Air Humidity
,”
Comput. Electron. Agric.
,
60
(
1
), pp.
1
7
.
39.
Currit
,
N.
,
2002
, “
Inductive Regression: Overcoming OLS Limitations With the General Regression Neural Network
,”
Comput. Environ. Urban Syst.
,
26
(
4
), pp.
335
353
.
40.
Yagci
,
O.
,
Mercan
,
D.
,
Cigizoglu
,
H.
, and
Kabdasli
,
M.
,
2005
, “
Artificial Intelligence Methods in Breakwater Damage Ratio Estimation
,”
Ocean Eng.
,
32
(
17–18
), pp.
2088
2106
.
41.
Gretton
,
A.
,
Borgwardt
,
K. M.
, and
Rasch
,
M. J.
,
2012
, “
A Kernel Two-Sample Test
,”
J. Mach. Learn. Res.
,
13
(
1
), pp.
723
773
.
42.
Viana
,
F. A. C.
, and
Goel
,
T.
,
2010
,
SURROGATES Toolbox User’s Guide
,
Gainesville, FL
.
43.
Toal
,
D. J.
,
2015
, “
Some Considerations Regarding the Use of Multi-Fidelity Kriging in the Construction of Surrogate Models
,”
Struct. Multidiscip. Optim.
,
51
(
6
), pp.
1223
1245
.
44.
Da
,
B.
,
Ong
,
Y. S.
,
Feng
,
L.
,
Qin
,
A. K.
,
Gupta
,
A.
,
Zhu
,
Z.
,
Ting
,
C.-K.
,
Tang
,
K.
, and
Yao
,
X.
,
2017
, “
Evolutionary Multitasking for Single-Objective Continuous Optimization: Benchmark Problems, Performance Metric, And Baseline Results
,” arXiv preprint arXiv:1706, pp.03470.
You do not currently have access to this content.