Abstract

Modern complex systems should be resiliently designed to enable recovery in a variety of expected or unexpected environments. Resilience is defined as the ability to withstand and recover from disruptive events. The objective of developing resilient systems drives the need for analysis tools to guide the system architecture process. There is a need for the creation of resilience tools that are time-based and applicable to the system architecture process. The larger literature offers a variety of methods and quantitative metrics for assessing resilience. Still, there is a lack of system architecting tools that focus on assessing the resilience of the system architecture options considering the dual nature of the system's physical and functional aspects while taking into account the design of redundancy into the system's recoverability behavior. To bridge this gap, this article proposes a dynamic network-based resilience assessment method that models systems as a dual-layer functional and physical network. The method, which has been developed into a computational tool, generates a measure of resilience that serves as a quantitative evaluation indicator during system architecting. As a case study, the method is applied to eight power and propulsion system architecture options. The findings demonstrate that, even before a system architecture has matured, the tool supports informed decision-making, for example, in terms of measuring the effectiveness of redundancy introduced to improve resilience, as well as early detection of system vulnerabilities.

References

1.
INCOSE
,
2023
,
INCOSE Systems Engineering Handbook
,
John Wiley & Sons
,
Hoboken, NJ
.
2.
Fact Sheet
,
2011
,
Resilience of Space Capabilities
,
Department of Defense and Office of the Director of National Intelligence
,
Washington, DC
.
3.
Henry
,
D.
, and
Ramirez-Marquez
,
J. E.
,
2012
, “
Generic Metrics and Quantitative Approaches for System Resilience as a Function of Time
,”
Reliab. Eng. Syst. Saf.
,
99
, pp.
114
122
.
4.
Hosseini
,
S.
,
Barker
,
K.
, and
Ramirez-Marquez
,
J. E.
,
2016
, “
A Review of Definitions and Measures of System Resilience
,”
Reliab. Eng. Syst. Saf.
,
145
, pp.
47
61
.
5.
Woods
,
D. D.
,
2015
, “
Four Concepts for Resilience and the Implications for the Future of Resilience Engineering
,”
Reliab. Eng. Syst. Saf.
,
141
, pp.
5
9
.
6.
Allenby
,
B.
, and
Fink
,
J.
,
2005
, “
Toward Inherently Secure and Resilient Societies
,”
Science
,
309
(
5737
), pp.
1034
1036
.
7.
Pregenzer
,
A. L.
,
2011
,
Systems Resilience: A New Analytical Framework for Nuclear Nonproliferation, No. SAND2011-9463
,
Sandia National Laboratories (SNL)
,
Albuquerque, NM, and Livermore, CA
.
8.
Haimes
,
Y. Y.
,
2009
, “
On the Definition of Resilience in Systems
,”
Risk Anal.: Int. J.
,
29
(
4
),
498
501
.
9.
Chang
,
S. E.
, and
Shinozuka
,
M.
,
2004
, “
Measuring Improvements in the Disaster Resilience of Communities
,”
Earthq. Spectra
,
20
(
3
), pp.
739
755
.
10.
Mirchandani
,
C.
,
2020
, “
Resilience Modeling in Complex Systems
,”
Procedia Comput. Sci.
,
168
, pp.
232
240
.
11.
Pumpuni-Lenss
,
G.
,
Blackburn
,
T.
, and
Garstenauer
,
A.
,
2017
, “
Resilience in Complex Systems: An Agent-Based Approach
,”
Syst. Eng.
,
20
(
2
), pp.
158
172
.
12.
Weick
,
K. E.
, and
Sutcliffe
,
K. M.
,
2011
,
Managing the Unexpected: Resilient Performance in an Age of Uncertainty
, Vol.
8
,
John Wiley & Sons
,
Hoboken, NJ
.
13.
Wied
,
M.
,
Oehmen
,
J.
, and
Welo
,
T.
,
2020
, “
Conceptualizing Resilience in Engineering Systems: An Analysis of the Literature
,”
Syst. Eng.
,
23
(
1
), pp.
3
13
.
14.
Cheng
,
Y.
,
Elsayed
,
E. A.
, and
Huang
,
Z.
,
2022
, “
Systems Resilience Assessments: A Review, Framework and Metrics
,”
Int. J. Prod. Res.
,
60
(
2
), pp.
595
622
.
15.
Naghshbandi
,
S. N.
,
Varga
,
L.
,
Purvis
,
A.
,
Mcwilliam
,
R.
,
Minisci
,
E.
,
Vasile
,
M.
,
Troffaes
,
M.
, et al
,
2020
, “
A Review of Methods to Study Resilience of Complex Engineering and Engineered Systems
,”
IEEE Access
,
8
, pp.
87775
87799
.
16.
Cassottana
,
B.
,
Roomi
,
M. M.
,
Mashima
,
D.
, and
Sansavini
,
G.
,
2023
, “
Resilience Analysis of Cyber-Physical Systems: A Review of Models and Methods
,”
Risk Anal.
,
43
(
11
), pp.
2359
2379
.
17.
Yodo
,
N.
, and
Wang
,
P.
,
2016
, “
Engineering Resilience Quantification and System Design Implications: A Literature Survey
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111408
.
18.
Mehrpouyan
,
H.
,
Haley
,
B.
,
Dong
,
A.
,
Tumer
,
I. Y.
, and
Hoyle
,
C.
,
2015
, “
Resiliency Analysis for Complex Engineered System Design
,”
AI EDAM
,
29
(
1
), pp.
93
108
.
19.
Yodo
,
N.
,
Wang
,
P.
, and
Zhou
,
Z.
,
2017
, “
Predictive Resilience Analysis of Complex Systems Using Dynamic Bayesian Networks
,”
IEEE Trans. Reliab.
,
66
(
3
), pp.
761
770
.
20.
Yodo
,
N.
, and
Wang
,
P.
,
2016
, “
Resilience Modeling and Quantification for Engineered Systems Using Bayesian Networks
,”
ASME J. Mech. Des.
,
138
(
3
), p.
031404
.
21.
Vugrin
,
E. D.
,
Turnquist
,
M. A.
, and
Brown
,
N. J.
,
2014
, “
Optimal Recovery Sequencing for Enhanced Resilience and Service Restoration in Transportation Networks
,”
Int. J. Crit. Infrastruct.
,
10
(
3–4
), pp.
218
246
.
22.
Sterbenz
,
J. P.
,
Hutchison
,
D.
,
Çetinkaya
,
E. K.
,
Jabbar
,
A.
,
Rohrer
,
J. P.
,
Schöller
,
M.
, and
Smith
,
P.
,
2010
, “
Resilience and Survivability in Communication Networks: Strategies, Principles, and Survey of Disciplines
,”
Comput. Netw.
,
54
(
8
), pp.
1245
1265
.
23.
Chatterjee
,
A.
,
Helbig
,
C.
,
Malak
,
R.
, and
Layton
,
A.
,
2023
, “
A Comparison of Graph-Theoretic Approaches for Resilient System of Systems Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
030906
.
24.
Markina-Khusid
,
A.
,
Jacobs
,
R. B.
,
Antul
,
L.
,
Cho
,
L.
, and
Tran
,
H. T.
,
2021
, “
A Complex Network Framework for Validated Assessments of Systems of Systems Robustness
,”
IEEE Syst. J.
,
16
(
1
), pp.
1092
1102
.
25.
Wu
,
J.
, and
Wang
,
P.
,
2023
, “
Generative Design for Resilience of Interdependent Network Systems
,”
ASME J. Mech. Des.
,
145
(
3
), p.
031705
.
26.
Mahabadi
,
Z.
,
Varga
,
L.
, and
Dolan
,
T.
,
2023
, “
A Survey of Multilayer Networks Modelled to Assess Robustness in Infrastructure Systems
,”
Proc. Inst. Civil Eng.: Smart Infrastruct. Constr.
,
176
(
3
), pp.
117
125
.
27.
Alashaikh
,
A.
,
Tipper
,
D.
, and
Gomes
,
T.
,
2018
, “
Exploring the Logical Layer to Support Differentiated Resilience Classes in Multilayer Networks
,”
Ann. Telecommun.
,
73
(
1
), pp.
63
79
.
28.
Kuikka
,
V.
, and
Rantanen
,
H.
,
2022
, “
Resilience of Multi-layer Communication Networks
,”
Sensors
,
23
(
1
), p.
86
.
29.
Huynh
,
P. K.
,
Mishkatur Rahman
,
M.
,
Yadav
,
O. P.
,
Le
,
T. Q.
, and
Le
,
C.
,
2024
, “
Assessing Robustness and Vulnerability in Interdependent Network Infrastructure: A Multilayer Network Approach
,”
2024 Annual Reliability and Maintainability Symposium (RAMS)
,
Albuquerque, NM
,
Jan. 22–25
,
IEEE
, pp.
1
7
.
30.
Li
,
Q.
,
Dong
,
S.
, and
Mostafavi
,
A.
,
2019
, “
Modeling of Inter-Organizational Coordination Dynamics in Resilience Planning of Infrastructure Systems: A Multilayer Network Simulation Framework
,”
PLoS One
,
14
(
11
), p.
e0224522
.
31.
Ulak
,
M. B.
,
Sriram
,
L. M.
,
Kocatepe
,
A.
,
Ozguven
,
E. E.
, and
Arghandeh
,
R.
2021
, “
Resilience Characterization for Multilayer Infrastructure Networks
,”
IEEE Intell. Transp. Syst. Mag.
,
14
(
4
), pp.
121
132
.
32.
Alonso
,
M.
,
Turanzas
,
J.
,
Amaris
,
H.
, and
Ledo
,
A. T.
,
2021
, “
Cyber-Physical Vulnerability Assessment in Smart Grids Based on Multilayer Complex Networks
,”
Sensors
,
21
(
17
), p.
5826
.
33.
Dagnas
,
R.
,
Barbeau
,
M.
,
Garcia-Alfaro
,
J.
, and
Yaich
,
R.
,
2024
, “
Resilience Assessment of Multi-layered Cyber-Physical Systems
,”
2024 IFIP Networking Conference (IFIP Networking)
,
Thessaloniki, Greece
,
June 3–6
,
IEEE
, pp.
634
639
.
34.
Kazim
,
M.
,
Pirim
,
H.
,
Shi
,
S.
, and
Wu
,
D.
,
2024
, “
Multilayer Analysis of Energy Networks
,”
Sustain. Energy Grids Netw.
,
39
, p.
101407
.
35.
Brownlow
,
L. C.
,
Goodrum
,
C. J.
,
Sypniewski
,
M. J.
,
Coller
,
J. A.
, and
Singer
,
D. J.
,
2021
, “
A Multilayer Network Approach to Vulnerability Assessment for Early-Stage Naval Ship Design Programs
,”
Ocean Eng.
,
225
, p.
108731
.
36.
Goodrum
,
C. J.
,
Shields
,
C. P.
, and
Singer
,
D. J.
,
2018
, “
Understanding Cascading Failures Through a Vulnerability Analysis of Interdependent Ship-Centric Distributed Systems Using Networks
,”
Ocean Eng.
,
150
, pp.
36
47
.
37.
Holme
,
P.
, and
Saramäki
,
J.
,
2012
, “
Temporal Networks
,”
Phys. Rep.
,
519
(
3
), pp.
97
125
.
38.
Salama
,
M.
,
Ezzeldin
,
M.
,
El-Dakhakhni
,
W.
, and
Tait
,
M.
,
2022
, “
Temporal Networks: A Review and Opportunities for Infrastructure Simulation
,”
Sustain. Resil. Infrastruct.
,
7
(
1
), pp.
40
55
.
39.
Scellato
,
S.
,
Leontiadis
,
I.
,
Mascolo
,
C.
,
Basu
,
P.
, and
Zafer
,
M.
,
2011
, “
Evaluating Temporal Robustness of Mobile Networks
,”
IEEE Trans. Mobile Comput.
,
12
(
1
), pp.
105
117
.
40.
Bastan
,
O.
,
Fiedler
,
P.
,
Benesl
,
T.
, and
Arm
,
J.
,
2019
, “
Redundancy as an Important Source of Resilience in the Safety II Concept
,”
IFAC-PapersOnLine
,
52
(
27
), pp.
382
387
.
41.
Chen
,
C.-C.
, and
Crilly
,
N.
,
2014
, “
Modularity, Redundancy and Degeneracy: Cross-Domain Perspectives on Key Design Principles
,”
2014 IEEE International Systems Conference Proceedings
,
Ottawa, ON, Canada
,
Mar. 31–Apr. 3
,
IEEE
, pp.
546
553
.
42.
Wang
,
J.
, and
Li
,
M.
,
2014
, “
Redundancy Allocation for Reliability Design of Engineering Systems With Failure Interactions
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
, Vol.
46322
, p.
V02BT03A042
.
43.
Wang
,
J.
, and
Li
,
M.
,
2015
, “
Redundancy Allocation Optimization for Multistate Systems With Failure Interactions Using Semi-Markov Process
,”
ASME J. Mech. Des.
,
137
(
10
), p.
101403
.
44.
Uday
,
P.
, and
Marais
,
K.
,
2013
, “
Exploiting Stand-In Redundancy to Improve Resilience in a System-of-Systems (SoS)
,”
Procedia Comput. Sci.
,
16
, pp.
532
541
.
45.
Ribeiro
,
R. R.
,
Bessani
,
M.
,
Fogliatto
,
M. D.
, and
Maciel
,
C. D.
,
2019
, “
Resilience Assessment of Self-Healing Systems With Redundancy
,”
IEEE Lat. Am. Trans.
,
17
(
9
), pp.
1546
1551
.
46.
Paparistodimou
,
G.
,
Duffy
,
A.
,
Whitfield
,
R. I.
,
Knight
,
P.
, and
Robb
,
M.
,
2020
, “
A Network Science-Based Assessment Methodology for Robust Modular System Architectures During Early Conceptual Design
,”
J. Eng. Des.
,
31
(
4
), pp.
179
218
.
47.
Paparistodimou
,
G.
,
Duffy
,
A.
,
Whitfield
,
R. I.
,
Knight
,
P.
, and
Robb
,
M.
,
2020
, “
A Network Tool to Analyse and Improve Robustness of System Architectures
,”
Des. Sci.
,
6
, p.
e8
.
You do not currently have access to this content.