Abstract

Motivated by heat dissipation, the rigid-compliant hybrid cellular expansion mechanisms with motion amplification and superposition are proposed in this paper. Compared with existing studies, the expansion mechanism is not only easy to realize the plane tessellation via cellular design due to its regular polygon structure but also has the ability of motion amplification and superposition due to its compliant displacement amplifier and rigid scissors. First, the scheme of expansion mechanisms, especially the working principle of motion amplification and superposition, is introduced. The configuration design of a family of expansion mechanisms is presented, including varying number of edges, concave/convex property, and inner/outer layout. Second, the constraint condition and analytical modeling of relations between output performances of expansion mechanisms and dimensional parameters are carried out. Third, the displacement amplification ratio of expansion mechanisms and output performances of several typical expansion mechanisms when they act as cells to tessellate a plane with a constrained area are analyzed. Finally, the output performances of expansion mechanisms are verified via the finite element analysis. The results show that proposed cellular expansion mechanisms are beneficial for realizing plane tessellation and offer motion amplification and superposition, which provide prospects in the field of mechanism design such as metamaterials.

References

1.
Elbreki
,
A. M.
,
Alghoul
,
M. A.
,
Sopian
,
K.
, and
Hussein
,
T.
,
2017
, “
Towards Adopting Passive Heat Dissipation Approaches for Temperature Regulation of PV Module as a Sustainable Solution
,”
Renew. Sust. Energ. Rev.
,
69
, pp.
961
1017
.
2.
Yu
,
W.
,
Duan
,
Z.
,
Zhang
,
G.
,
Liu
,
C. H.
, and
Fan
,
S. S.
,
2018
, “
Effect of an Auxiliary Plate on Passive Heat Dissipation of Carbon Nanotube-Based Materials
,”
Nano Lett.
,
18
(
3
), pp.
1770
1776
.
3.
Liang
,
P. Y.
,
Wang
,
W.
,
Xin
,
J. J.
,
Li
,
Y.
,
Yang
,
X.
,
Duan
,
Y. B.
,
Hu
,
D. M.
, et al
,
2022
, “
In Situ Combustion Synthesis of Gr/h-BN Composites and Its Passive Heat Dissipation Application
,”
ACS Omega
,
7
(
41
), pp.
36786
36794
.
4.
Zhang
,
B.
,
Li
,
X. B.
, and
Li
,
D.
,
2013
, “
Assessment of Thermal Expansion Coefficient for Pure Metals
,”
Calphad
,
43
, pp.
7
17
.
5.
Guo
,
F. Y.
,
Sun
,
Z. L.
,
Zhang
,
S. N.
,
Gao
,
R.
, and
Li
,
H. Y.
,
2022
, “
Optimal Design and Reliability Analysis of a Compliant Stroke Amplification Mechanism
,”
Mech. Mach. Theory
,
171
, p.
104748
.
6.
Wang
,
G.
,
Yan
,
Y. G.
,
Ma
,
J. J.
, and
Cui
,
J. J.
,
2019
, “
Design, Test and Control of a Compact Piezoelectric Scanner Based on a Compound Compliant Amplification Mechanism
,”
Mech. Mach. Theory
,
139
, pp.
460
475
.
7.
Li
,
H. Y.
,
Guo
,
F. Y.
,
Wang
,
Y. R.
,
Wang
,
Z. P.
,
Li
,
C. L.
,
Ling
,
M. X.
, and
Hao
,
G. B.
,
2022
, “
Design and Modeling of a Compact Compliant Stroke Amplification Mechanism With Completely Distributed Compliance for Ground-Mounted Actuators
,”
Mech. Mach. Theory
,
167
, p.
104566
.
8.
Kizilorenli
,
E.
, and
Maden
,
F.
,
2023
, “
Modular Responsive Facade Proposals Based on Semi-Regular and Demi-Regular Tessellation: Daylighting and Visual Comfort
,”
Front. Archit. Res.
,
12
(
4
), pp.
601
612
.
9.
Wang
,
T. W.
,
Yu
,
J. J.
, and
Zhao
,
H. Z.
,
2023
, “
A Family of Sweat Pore-Inspired Compliant Cellular Expansion Mechanisms
,”
Mech. Mach. Theory
,
183
, p.
105251
.
10.
Chen
,
F. X.
,
Zhang
,
Q. J.
,
Dong
,
W.
, and
Sun
,
L. N.
,
2022
, “
Design and Test of a Compact Large-Stroke Dual-Drive Linear-Motion System
,”
Mech. Syst. Signal Proc.
,
180
, p.
109438
.
11.
Chen
,
G. M.
,
Ma
,
Y. K.
, and
Li
,
J. J.
,
2016
, “
A Tensural Displacement Amplifier Employing Elliptic-Arc Flexure Hinges
,”
Sens. Actuators, A: Phys.
,
247
, pp.
307
315
.
12.
Chen
,
F. X.
,
Zhang
,
Q. J.
,
Gao
,
Y. Z.
, and
Dong
,
W.
,
2022
, “
Design and Analysis of a Compact Piezo-Actuated Microgripper With a Large Amplification Ratio
,”
ASME J. Mech. Des.
,
144
(
5
), p.
054503
.
13.
Li
,
Y. Z.
,
Zhu
,
X. F.
,
Bi
,
S. S.
,
Guo
,
R. H.
,
Sun
,
J. H.
, and
Hu
,
W. C.
,
2020
, “
Design and Development of Compliant Mechanisms for Electromagnetic Force Balance Sensor
,”
Precis. Eng.
,
64
, pp.
157
164
.
14.
Shen
,
X.
,
Zhang
,
L.
, and
Qiu
,
D. M.
,
2021
, “
A Lever-Bridge Combined Compliant Mechanism for Translation Amplification
,”
Precis. Eng.
,
67
, pp.
383
392
.
15.
Ling
,
M. X.
,
Gao
,
J. Y.
,
Jiang
,
Z.
, and
Lin
,
J.
,
2016
, “
Theoretical Modeling of Attenuated Displacement Amplification for Multistage Compliant Mechanism and Its Application
,”
Sens. Actuators, A: Phys.
,
249
, pp.
15
22
.
16.
Li
,
Y. Z.
,
Bi
,
S. S.
, and
Zhao
,
C. X.
,
2019
, “
Analytical Modeling and Analysis of Rhombus-Type Amplifier Based on Beam Flexures
,”
Mech. Mach. Theory
,
139
, pp.
195
211
.
17.
Yan
,
K.
,
Dong
,
L.
,
Zheng
,
J. H.
,
Li
,
B. T.
,
Wang
,
D. F.
, and
Sun
,
Y. J.
,
2018
, “
Flow Performance Analysis of Different Air Supply Methods for High Speed and Low Friction Ball Bearing
,”
Tribol. Int.
,
121
, pp.
94
107
.
18.
Venkiteswaran
,
V. K.
, and
Su
,
H. J.
,
2016
, “
Pseudo-Rigid-Body Models for Circular Beams Under Combined Tip Loads
,”
Mech. Mach. Theory
,
106
, pp.
80
93
.
19.
Hargrove
,
B.
,
Nastevska
,
A.
,
Frecker
,
M.
, and
Jovanova
,
J.
,
2022
, “
Pseudo Rigid Body Model for a Nonlinear Folding Compliant Mechanism
,”
Mech. Mach. Theory
,
176
, p.
105017
.
20.
Zhao
,
N.
,
Luo
,
Y. D.
,
Deng
,
H. B.
, and
Shen
,
Y. T.
,
2018
, “
The Deformable Quad-Rotor: Mechanism Design, Kinematics, and Dynamics Effects Investigation
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
045002
.
21.
Zhang
,
Y.
,
Qian
,
Z. Y.
,
Huang
,
H. L.
,
Yang
,
X. J.
, and
Li
,
B.
,
2022
, “
A Snake-Inspired Swallowing Robot Based on Hoberman’s Linkage
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060905
.
22.
Patel
,
J.
, and
Ananthasuresh
,
G. K.
,
2007
, “
A Kinematic Theory for Radially Foldable Planar Linkages
,”
Int. J. Solids Struct.
,
44
(
18–19
), pp.
6279
6298
.
23.
Chen
,
B.
,
Hu
,
J.
,
Chen
,
W. X.
, and
Qi
,
J.
,
2020
, “
Geometrical Analysis of Connecting Beam Mandala: A Planar Deployable Mechanism
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011009
.
24.
Hopkins
,
J. B.
,
Lange
,
K. J.
, and
Spadaccini
,
C. M.
,
2013
, “
Designing Microstructural Architectures With Thermally Actuated Properties Using Freedom, Actuation, and Constraint Topologies
,”
ASME J. Mech. Des.
,
135
(
6
), p.
061004
.
25.
Delissen
,
A.
,
Radaelli
,
G.
,
Shaw
,
L. A.
,
Hopkins
,
J. B.
, and
Herder
,
J. L.
,
2018
, “
Design of an Isotropic Metamaterial With Constant Stiffness and Zero Poisson's Ratio Over Large Deformations
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111405
.
26.
Chavey
,
D.
,
1989
, “
Tilings by Regular Polygons—II: A Catalog of Tilings
,”
Comput. Math. Appl.
,
17
(
1–3
), pp.
147
165
.
You do not currently have access to this content.