Abstract

This paper presents a novel real-time kinematic simulation algorithm for planar N-bar linkage mechanisms, both single- and multi-degrees-of-freedom, comprising revolute and/or prismatic joints and actuators. A key feature of this algorithm is a reinterpretation technique that transforms prismatic elements into a combination of revolute joint and links. This gives rise to a unified system of geometric constraints and a general-purpose solver which adapts to the complexity of the mechanism. The solver requires only two types of methods—fast dyadic decomposition and relatively slower optimization-based—to simulate all types of planar mechanisms. From an implementation point of view, this algorithm simplifies programming without requiring handling of different types of mechanisms. This versatile algorithm can handle serial, parallel, and hybrid planar mechanisms with varying degrees-of-freedom and joint types. Additionally, this paper presents an estimation of simulation time and structural complexity, shedding light on computational demands. Demonstrative examples showcase the practicality of this method.

References

1.
Deshpande
,
S.
, and
Purwar
,
A.
,
2019
, “
A Machine Learning Approach to Kinematic Synthesis of Defect-Free Planar Four-Bar Linkages
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021004
.
2.
Deshpande
,
S.
, and
Purwar
,
A.
,
2019
, “
Computational Creativity Via Assisted Variational Synthesis of Mechanisms Using Deep Generative Models
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121402
.
3.
Deshpande
,
S.
, and
Purwar
,
A.
,
2020
, “
An Image-Based Approach to Variational Path Synthesis of Linkages
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
2
), p.
021005
.
4.
Nobari
,
A. H.
,
Srivastava
,
A.
,
Gutfreund
,
D.
, and
Ahmed
,
F.
,
2022
, ”
LINKS: A Dataset of a Hundred Million Planar Linkage Mechanisms for Data-Driven Kinematic Design
,”
Volume 3A: 48th Design Automation Conference (DAC)
,
St. Louis, MO
,
Aug. 14–17
,
American Society of Mechanical Engineers
, pp.
1
14
.
5.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
6.
Yu
,
S.-C.
,
Chang
,
Y.
, and
Lee
,
J.-J.
,
2022
, “
A Generative Model for Path Synthesis of Four-Bar Linkages Via Uniform Sampling Dataset
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
237
(
4
), p.
095440622211237
.
7.
Vermeer
,
K.
,
Kuppens
,
R.
, and
Herder
,
J.
,
2018
, ”
Kinematic Synthesis Using Reinforcement Learning
,”
Volume 2A: 44th Design Automation Conference
,
Quebec, Canada
,
Aug. 26–29
,
American Society of Mechanical Engineers
, pp.
1
12
.
8.
Sharma
,
S.
, and
Purwar
,
A.
,
2022
, “
A Machine Learning Approach to Solve the Alt-Burmester Problem for Synthesis of Defect-Free Spatial Mechanisms
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021003
.
9.
Khan
,
N.
,
Ullah
,
I.
, and
Al-Grafi
,
M.
,
2015
, “
Dimensional Synthesis of Mechanical Linkages Using Artificial Neural Networks and Fourier Descriptors
,”
Mech. Sci.
,
6
(
1
), pp.
29
34
.
10.
Purwar
,
A.
, and
Chakraborty
,
N.
,
2023
, “
Deep Learning-Driven Design of Robot Mechanisms
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
6
), p.
060811
.
11.
Erdman
,
A.
, and
Gustafson
,
J.
,
1977
, LINCAGES: Linkage INteractive Computer Analysis and Graphically Enhanced Synthesis Packages, Technical Report.
12.
Erdman
,
A. G.
, and
Riley
,
D.
,
1981
, ”
Computer-Aided Linkage Design Using the Lincages Package
,” ASME Design Engineering Technical Conferences, Paper No. 81-DET-121.
13.
Rubel
,
A. J.
, and
Kaufman
,
R. E.
,
1977
, “
Kinsyn III: A New Human-Engineered System for Interactive Computer-Aided Design of Planar Linkages
,”
ASME J. Eng. Ind.
,
99
(
2
), pp.
440
448
.
14.
Kihonge
,
J.
,
Vance
,
J.
, and
Larochelle
,
P.
,
2001
, ”
Spatial Mechanism Design in Virtual Reality With Networking
,”
ASME 2001 Design Engineering Technical Conferences
,
Pittsburgh, PA
,
Sept. 9–12
, pp.
1
8
.
15.
Larochelle
,
P.
,
1998
, ”
Spades: Software for Synthesizing Spatial 4C Linkages
,” CD-ROM Proceedings of the ASME DETC’98, Paper No. DETC98/Mech-5889.
16.
Larochelle
,
P.
,
Dooley
,
J.
,
Murray
,
A.
, and
McCarthy
,
J. M.
,
1993
, ”
SPHINX: Software for Synthesizing Spherical 4R Mechanisms
,”
Proceedings of the 1993 NSF Design and Manufacturing Systems Conference
,
Charlotte, NC
, Vol.
1
, pp.
607
611
.
17.
Ruth
,
D.
, and
McCarthy
,
J.
,
1997
, ”
Sphinxpc: An Implementation of Four Position Synthesis for Planar and Spherical 4R Linkages
,”
ASME Design Engineering Technical Conferences
,
Sacramento, CA
,
Sept. 14–17
.
18.
Tse
,
D.
, and
Larochelle
,
P.
,
1999
, ”
Osiris: A New Generation Spherical and Spatial Mechanism CAD Program
,”
Florida Conference on Recent Advancements in Robotics
,
Gainesville, FL
,
Apr. 29–30
.
19.
Su
,
H.-J.
,
Collins
,
C.
, and
McCarthy
,
J.
,
2002
, ”
An Extensible Java Applet for Spatial Linkage Synthesis
,”
ASME International Design Engineering Technical Conferences
,
Montreal, Quebec, Canada
,
Sept. 29–Oct. 2
, pp.
1
5
.
20.
Artas Engineering
, “SAM (Synthesis and Analysis of Mechanisms),” http://www.artas.nl/en.
22.
Norton Associates Engineering
, “Linkages,” http://www.designofmachinery.com/Linkage/index.html.
24.
Ltd., P. M.
, “MechDesigner,” http://www.psmotion.com/.
25.
Laboratory of Computational Mechanics, R., Bryansk State Technical University
, “Universal Mechanism”.
26.
KCP Technologies
, “The Geometer’s Sketchpad,” http://www.dynamicgeometry.com/.
27.
International GeoGebra Institute
, “Geogebra,” http://www.geogebra.org/cms/.
29.
Campbell
,
M.
, “Planar Mechanism Kinematic Simulator,” http://design.engr.oregonstate.edu/pmksintro.html.
30.
Trevor Dowd, H. Z., Robert Dutile
, “PMKS+,” https://pmksplus.mech.website/, Accessed October 16, 2022.
31.
Petuya
,
V.
,
Macho
,
E.
,
Altuzarra
,
O.
, and
Pinto
,
C.
,
2011
, “
Educational Software Tools for the Kinematic Analysis of Mechanisms
,”
Comp. Appl. Eng. Edu.
,
6
(
4
), pp.
261
266
.
32.
Simionescu
,
P.A.
,
2016
, ”
MeKin2D: Suite for Planar Mechanism Kinematics
,” Volume 5B: 40th Mechanisms and Robotics Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p.
v05BT07A083
.
33.
Simionescu
,
P.
,
2004
, “Enhancing Programming Skills to Engineering Students Using MeKin2D Modular Kinematics Subroutines”.
34.
Schmidt
,
P.
, and
Lax
,
P.
,
2018
, “Use of Computer Coding to Teach Design in a Mechanics Course,” Resulting in an Implementation of a Kinematic Mechanism Design Tool Using PYTHON.
35.
Erdman
,
A. G.
, and
Sandor
,
G. N.
,
1991
,
Mechanism Design: Analysis and Synthesis
, Vol.
1
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
36.
Hain
,
K.
,
1967
,
Applied Kinematics
,
McGraw Hill
,
New York
.
37.
Dhingra
,
A. K.
,
Almadi
,
A. N.
, and
Kohli
,
D.
,
1999
, “
A Gröbner-Sylvester Hybrid Method for Closed-Form Displacement Analysis of Mechanisms
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
431
438
.
38.
Wampler
,
C. W.
,
2000
, “
Solving the Kinematics of Planar Mechanisms by Dixon Determinant and a Complex-Plane Formulation
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
382
387
.
39.
Wampler
,
C. W.
,
1999
, “
Solving the Kinematics of Planar Mechanisms
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
387
391
.
40.
Nielsen
,
J.
, and
Roth
,
B.
,
1999
, “
On the Kinematic Analysis of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
18
(
12
), pp.
1147
1160
.
41.
Hernández
,
A.
, and
Petuya
,
V.
,
2004
, “
Position Analysis of Planar Mechanisms With R-Pairs Using a Geometrical-Iterative Method
,”
Mech. Mach. Theory
,
39
(
2
), pp.
133
152
.
42.
Javier García de Jalón
,
E. B.
,
2001
,
Kinematic and Dynamic Simulation of Multibody Systems-The Real-Time Challenge
,
Springer-Verlag
,
New York
.
43.
Ait-Aoudia
,
S.
,
Jegou
,
R.
, and
Michelucci
,
D.
,
1993
,
Reduction of Constraint Systems
,
Compugraphics
,
Alvor, Algarve, Portugal
, pp.
331
340
.
44.
Ait-Aoudia
,
S.
, and
Foufou
,
S.
,
2010
, “
A 2D Geometric Constraint Solver Using a Graph Reduction Method
,”
Adv. Eng. Soft.
,
41
(
10–11
), pp.
1187
1194
.
45.
Bouma
,
W.
,
Fudos
,
I.
,
Hoffmann
,
C.
,
Cai
,
J.
, and
Paige
,
R.
,
1995
, “
Geometric Constraint Solver
,”
Comput. Aided Des.
,
27
(
6
), pp.
487
501
.
46.
Fudos
,
I.
, and
Hoffmann
,
C.
,
2004
, “
A Graph-Constructive Approach to Solving Systems of Geometric Constraints
,”
ACM Trans. Graph.
,
16
(
2
), pp.
179
216
.
47.
Simionescu
,
P.
,
2014
, Computer-Aided Graphing and Simulation Tools for AutoCAD Users.
48.
Tsai
,
L.
,
2001
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press LLC
,
Boca Raton, FL
.
49.
Yamamoto
,
T.
,
Iwatsuki
,
N.
, and
Ikeda
,
I.
,
2020
, “
Automated Kinematic Analysis of Closed-Loop Planar Link Mechanisms
,”
Machines
,
8
(
3
).
50.
Moré
,
J. J.
,
1978
, The Levenberg-Marquardt Algorithm: Implementation and Theory,
G. A.
Watson
, ed.,
Numerical Analysis
,
Springer
,
Berlin, Heidelberg
, pp.
105
116
.
51.
Galletti
,
C.
, and
Giannotti
,
E.
,
2009
,
Assur’s-Groups-Based Simulation for Teaching Kinematics of Planar Linkages
.
52.
Galletti
,
C. U.
,
1979
, “
On the Position Analysis of Assur’s Groups of High Class
,”
Meccanica
,
14
(
1
), pp.
6
10
.
53.
Gogu
,
G.
,
2005
, “
Chebychev–Grübler–Kutzbach’s Criterion for Mobility Calculation of Multi-Loop Mechanisms Revisited Via Theory of Linear Transformations
,”
Eur. J. Mech. - A/Solids
,
24
(
3
), pp.
427
441
.
You do not currently have access to this content.