Abstract

The design of a manufacturing supply network (MSN) requires the consideration of decisions made by different groups at multiple levels and their interactions that include potential conflicts. Decisions are typically made based on information from computational simulations that are abstractions of reality and, therefore, embody uncertainty. This necessitates focusing on design space exploration to identify robust satisficing solution sets that are relatively insensitive to uncertainty. Current frameworks that support robust satisficing design space exploration are limited by their capability to support the efficient exploration of multilevel design spaces simultaneously. In this paper, we present the Framework for Robust Multilevel Co-Design Exploration (FRoMCoDE), a decision support framework that allows designers to (i) model decision problems across multiple levels and their interactions, (ii) consider uncertainties in the decision problems, and (iii) visualize and systematically carry out simultaneous exploration of multilevel design spaces, termed co-design exploration. In FRoMCoDE, we combine the coupled-compromise Decision Support Problem construct, where a combination of the Preemptive and Archimedean formulations is used, with robust design constructs and interpretable-Self-Organizing Maps (iSOM)-based visualization to facilitate robust co-design. We use a steel MSN problem with decisions made at two levels to test the framework. Using the problem, we demonstrate FRoMCoDE's efficacy in supporting designers in (i) modeling multilevel decision problems and their interactions, considering the uncertainties, and (ii) the efficient co-design exploration of multilevel design spaces. FRoMCoDE is generic and supports designers in the robust co-design exploration of multilevel systems.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Chen
,
W.
,
Simpson
,
T.
,
Allen
,
J.
, and
Mistree
,
F.
,
1999
, “
Satisfying Ranged Sets of Design Requirements Using Design Capability Indices as Metrics
,”
Eng. Optim.
,
31
(
5
), pp.
615
639
.
2.
Mistree
,
F.
,
Smith
,
W. F.
,
Bras
,
B. A.
,
Allen
,
J. K.
, and
Muster
,
D.
,
1990
, “
Decision-Based Design. A Contemporary Paradigm for Ship Design
,”
Trans. Soc. Nav. Archit. Mar. Eng.
,
98
, pp.
565
597
.
3.
Muster
,
D.
, and
Mistree
,
F.
,
1988
, “
The Decision Support Problem Technique in Engineering Design
,”
Int. J. Appl. Eng. Educ.
,
4
(
1
), pp.
23
33
.
4.
Mistree
,
F.
, and
Allen
,
J. K.
,
1997
, “
Position Paper: Optimization in Decision-Based Design
,”
Optimization in Industry
,
Palm Coast, FL
,
Mar. 23–27
, pp.
1
9
.
5.
Simon
,
H. A.
,
1947
,
Administrative Behavior
,
Mcmillan
,
New York
.
6.
Simon
,
H. A.
,
1956
, “
Rational Choice and the Structure of the Environment
,”
Psychol. Rev.
,
63
(
2
), pp.
129
138
.
7.
Mistree
,
F.
,
Hughes
,
O. F.
, and
Bras
,
B.
,
1993
, “Chapter 11: The Compromise Decision Support Problem and the Adaptive Linear Programming Algorithm,”
Structural Optimization: Status Promise
,
M. P.
Kamat
, ed., AIAA, Washington, DC, pp.
247
286
.
8.
Sharma
,
G.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2023
, “
Exploring Robust Decisions in the Design of Coupled Engineered Systems
,”
ASME J. Mech. Des.
,
145
(
12
), p.
121402
.
9.
Sharma
,
G.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2022
, “
Designing Concurrently and Hierarchically Coupled Engineered Systems
,”
Eng. Optim.
,
55
(
9
), pp.
1556
1576
.
10.
Nellippallil
,
A. B.
,
Allen
,
J. K.
,
Gautham
,
B. P.
,
Singh
,
A. K.
, and
Mistree
,
F.
,
2020
, “Chapter 7: Robust Concept Exploration of Materials, Products, and Associated Manufacturing Processes,”
Architecting Robust Co-Design of Materials, Products, and Manufacturing Processes
,
Springer International Publishing
, pp.
263
296
.
11.
Choi
,
H.-J.
,
Austin
,
R.
,
Allen
,
J. K.
,
McDowell
,
D. L.
,
Mistree
,
F.
, and
Benson
,
D. J.
,
2005
, “
An Approach for Robust Design of Reactive Power Metal Mixtures Based on Non-Deterministic Micro-Scale Shock Simulation
,”
J. Comput.-Aided Mater. Des.
,
12
(
1
), pp.
57
85
.
12.
Martins
,
J. R. R. A.
, and
Lambe
,
A. B.
,
2013
, “
Multi-Disciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
.
13.
Sobieszczanski-Sobieski
,
J.
, and
Kodiyalam
,
S.
,
2001
, “
BLISS/S: A New Method for Two-Level Structural Optimization
,”
Struct. Multidiscipl. Optim.
,
21
(
1
), pp.
1
13
.
14.
Sobieszczanski-Sobieski
,
J.
,
Agte
,
J.
, and
Robert Sandusky
,
J.
,
1998
, “
Bi-Level Integrated System Synthesis (BLISS)
,”
Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
St. Louis, MO
,
Sept. 2–4
, pp.
1543
1557
.
15.
Sobieszczanski-Sobieski
,
J.
,
Altus
,
T.
,
Phillips
,
M.
, and
Sandusky
,
R.
,
2002
, “
Bi-Level Integrated System Synthesis (BLISS) for Concurrent and Distributed Processing
,”
Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Atlanta, GA
,
Sept. 4–6
, pp.
1
11
.
16.
Kim
,
H. M.
,
Rideout
,
D. G.
,
Papalambros
,
P. Y.
, and
Stein
,
J. L.
,
2003
, “
Analytical Target Cascading in Automotive Vehicle Design
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
481
489
.
17.
Kroo
,
I.
,
Altus
,
S.
,
Braun
,
R.
,
Gage
,
P.
, and
Sobieski
,
I.
, “
Multi-Disciplinary Optimization Methods for Aircraft Preliminary Design
,”
Proceedings of the 5th Symposium on Multi-Disciplinary Analysis and Optimization
,
Panama City Beach, FL
,
Sept. 7–9
, pp.
697
707
.
18.
Allen
,
J. K.
,
Seepersad
,
C.
,
Choi
,
H.
, and
Mistree
,
F.
,
2006
, “
Robust Design for Multiscale and Multi-Disciplinary Applications
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
832
843
.
19.
Pourmehdi
,
M.
,
Paydar
,
M. M.
, and
Asadi-Gangraj
,
E.
,
2020
, “
Scenario-Based Design of a Steel Sustainable Closed-Loop Supply Chain Network Considering Production Technology
,”
J. Cleaner Prod.
,
277
, p.
123298
.
20.
Singh
,
S.
,
Mohanty
,
A.
,
Rai
,
R.
,
Mahanty
,
B.
, and
Tiwari
,
M. K.
,
2022
, “
An Optimization Framework for Operational-Level Resource Composition in an Inclusive Manufacturing System
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
5
), p.
051003
.
21.
Choi
,
H.-J.
,
McDowell
,
D. L.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2008
, “
An Inductive Design Exploration Method for Hierarchical Systems Design Under Uncertainty
,”
Eng. Optim.
,
40
(
4
), pp.
287
307
.
22.
Nellippallil
,
A. B.
,
Mohan
,
P.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2020
, “
An Inverse, Decision-Based Design Method for Robust Concept Exploration
,”
ASME J. Mech. Des.
,
142
(
8
), p.
081703
.
23.
Nellippallil
,
A. B.
,
Rangaraj
,
V.
,
Gautham
,
B.
,
Singh
,
A. K.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2018
, “
An Inverse, Decision-Based Design Method for Integrated Design Exploration of Materials, Products, and Manufacturing Processes
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111403
.
24.
Sharma
,
G.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2021
, “
A Method for Robust Design in a Coupled Decision Environment
,”
Des. Sci.
,
7
(
23
), pp.
1
31
.
25.
Thole
,
S. P.
, and
Ramu
,
P.
,
2020
, “
Design Space Exploration and Optimization Using Self-Organizing Maps
,”
Struct. Multidiscipl. Optim.
,
62
(
3
), pp.
1071
1088
.
26.
Richardson
,
T.
,
Kannan
,
H.
,
Bloebaum
,
C.
, and
Winer
,
E.
,
2014
, “
Incorporating Value-Driven Design Into the Visualization of Design Spaces Using Contextual Self-Organizing Maps: A Case Study of Satellite Design
,”
Proceedings of the 15th AIAA/ISSMO Multi-Disciplinary Analysis and Optimization Conference
,
Atlanta, GA
,
June 16–20
.
27.
Sushil
,
R. R.
,
Baby
,
M.
,
Sharma
,
G.
,
Balu Nellippallil
,
A.
, and
Ramu
,
P.
,
2022
, “
Data Driven Integrated Design Space Exploration Using iSOM
,”
Proceedings of the ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
.
28.
Nagar
,
D.
,
Pannerselvam
,
K.
, and
Ramu
,
P.
,
2022
, “
A Novel Data-Driven Vsualization of n-Dimensional Feasible Region Using Interpretable Self-Organizing Maps (iSOM)
,”
Neural Netw.
,
155
, pp.
398
412
.
29.
Nagar
,
D.
,
Ramu
,
P.
, and
Deb
,
K.
,
2023
, “
Visualization and Analysis of Pareto-Optimal Fronts Using Interpretable Self-Organizing Map (iSOM)
,”
Swarm Evol. Comput.
,
76
, p.
101202
.
30.
Madhavan
,
N.
,
Brooks
,
G.
,
Rhamdhani
,
M. A.
, and
Bordignon
,
A.
,
2022
, “
Contribution of CO2 Emissions From Basic Oxygen Steelmaking Process
,”
Metals
,
12
(
5
), pp.
797
.
31.
Ruth
,
M.
,
2004
, “Steel Production and Energy,”
Encyclopedia of Energy
,
C. J.
Cleveland
, ed.,
Elsevier
,
New York
, pp.
695
706
.
You do not currently have access to this content.