Abstract

In this paper, we present a decentralized approach based on a simple set of rules to schedule multi-robot cooperative additive manufacturing (AM). The results obtained using the decentralized approach are compared with those obtained from an optimization-based method, representing the class of centralized approaches for manufacturing scheduling. Two simulated case studies are conducted to evaluate the performance of both approaches in total makespan. In the first case, four rectangular bars of different dimensions from small to large are printed. Each bar is first divided into small subtasks (called chunks), and four robots are then assigned to cooperatively print the resulting chunks. The second case study focuses on testing geometric complexity, where four robots are used to print a mask stencil (an inverse stencil, not face covering). The result shows that the centralized approach provides a better solution (shorter makespan) compared to the decentralized approach for small-scale problems (i.e., a few robots and chunks). However, the gap between the solutions shrinks while the scale increases, and the decentralized approach outperforms the centralized approach for large-scale problems. Additionally, the runtime for the centralized approach increased by 39-fold for the extra-large problem (600 chunks and four robots) compared to the small-scale problem (20 chunks and four robots). In contrast, the runtime for the decentralized approach was not affected by the scale of the problem. Finally, a Monte-Carlo analysis was performed to evaluate the robustness of the centralized approach against uncertainties in AM. The result shows that the variations in the printing time of different robots can lead to a significant discrepancy between the generated plan and the actual implementation, thereby causing collisions between robots that should have not happened if there were no uncertainties. On the other hand, the decentralized approach is more robust because a collision-free schedule is generated in real-time.

References

1.
McPherson
,
J.
, and
Zhou
,
W.
,
2018
, “
A Chunk-Based Slicer for Cooperative 3D Printing
,”
Rapid Prototyping J.
,
24
(
9
), pp.
1436
1446
.
2.
ISO/ASTM
,
2015
, “
ASTM52900-15 Standard Terminology for Additive Manufacturing—General Principles—Terminology
,”
ASTM International
,
West Conshohocken, PA
,
3
(
4
), p.
5
.
3.
Artigues
,
C.
,
2017
, “
On the Strength of Time-Indexed Formulations for the Resource-Constrained Project Scheduling Problem
,”
Oper. Res. Lett.
,
45
(
2
), pp.
154
159
.
4.
Kwok
,
Y.-K.
, and
Ahmad
,
I.
,
1999
, “
Static Scheduling Algorithms for Allocating Directed Task Graphs to Multiprocessors
,”
ACM Comput. Surveys
,
31
(
4
), pp.
406
471
.
5.
Booth
,
K. E. C.
,
2016
, “
Optimization Approaches to Multi-Robot Planning and Scheduling
,”
The 26th International Conference on Automated Planning and Scheduling
,
London, UK
,
June 12–17
, p.
128
.
6.
Wang
,
Z.
, and
Gombolay
,
M.
,
2020
, “
Learning Scheduling Policies for Multi-Robot Coordination With Graph Attention Networks
,”
IEEE Robot. Autom. Lett.
,
5
(
3
), pp.
4509
4516
.
7.
Khuntia
,
A.
,
Choudhury
,
B.
, and
Biswal
,
B.
,
2012
, “
An Optimized Task Allocation for Multi Robot Systems Using Soft Computing Techniques
,”
2012 National Conference on Computing and Communication Systems
,
Durgapur, India
,
Nov. 21–22
, IEEE, pp.
1
6
.
8.
Shao
,
X.
,
Li
,
X.
,
Gao
,
L.
, and
Zhang
,
C.
,
2009
, “
Integration of Process Planning and Scheduling—A Modified Genetic Algorithm-Based Approach
,”
Comput. Oper. Res.
,
36
(
6
), pp.
2082
2096
.
9.
Wang
,
F.-S.
, and
Chen
,
L.-H.
,
2013
, “Heuristic Optimization,”
Encyclopedia of Systems Biology
,
W.
Dubitzky
,
O.
Wolkenhauer
,
K.
Cho
, and
H.
Yokota
, eds., Springer, New York, pp. 885.
10.
Poudel
,
L.
,
Zhou
,
W.
, and
Sha
,
Z.
,
2021
, “
Resource-Constrained Scheduling for Multi-Robot Cooperative Three-Dimensional Printing
,”
ASME J. Mech. Des.
,
143
(
7
), p.
072002
.
11.
Yu
,
J.
,
2015
, “
Intractability of Optimal Multirobot Path Planning on Planar Graphs
,”
IEEE Robot. Autom. Lett.
,
1
(
1
), pp.
33
40
.
12.
Tereshchuk
,
V.
,
Stewart
,
J.
,
Bykov
,
N.
,
Pedigo
,
S.
,
Devasia
,
S.
, and
Banerjee
,
A. G.
,
2019
, “
An Efficient Scheduling Algorithm for Multi-Robot Task Allocation in Assembling Aircraft Structures
,”
IEEE Robot. Autom. Lett.
,
4
(
4
), pp.
3844
3851
.
13.
Culbertson
,
P.
,
Bandyopadhyay
,
S.
, and
Schwager
,
M.
,
2019
, “
Multi-Robot Assembly Sequencing Via Discrete Optimization
,”
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Macau, China
,
Nov. 3–8
, IEEE,pp. 6502–6509.
14.
Cauligi
,
A.
,
Culbertson
,
P.
,
Stellato
,
B.
,
Bertsimas
,
D.
,
Schwager
,
M.
, and
Pavone
,
M.
,
2020
, “
Learning Mixed–IInteger Convex Optimization Strategies for Robot Planning and Control
,”
2020 59th IEEE Conference on Decision and Control (CDC)
,
Jeju, South Korea
,
Dec. 14–18
, IEEE, pp.
1698
1705
.
15.
Atay
,
N.
, and
Bayazit
,
B.
,
2006
,
Mixed-Integer Linear Programming Solution to Multi-Robot Task Allocation Problem, Washington University, St. Louis, Tech. Rep, 2006
.
16.
Darrah
,
M.
,
Niland
,
W.
, and
Stolarik
,
B.
,
2005
, “
Multiple UAV Dynamic Task Allocation Using Mixed Integer Linear Programming in a SEAD Mission
,”
Infotech@Aerospace
,
Arlington, VA
,
Sept. 26–29
, p.
7164
.
17.
Wei
,
C.
,
Ji
,
Z.
, and
Cai
,
B.
,
2020
, “
Particle Swarm Optimization for Cooperative Multi-Robot Task Allocation: A Multi-Objective Approach
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
2530
2537
.
18.
Sarkar
,
C.
,
Paul
,
H. S.
, and
Pal
,
A.
,
2018
, “
A Scalable Multi-Robot Task Allocation Algorithm
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, QLD, Australia
,
May 21–25
, IEEE, pp.
5022
5027
.
19.
Zitouni
,
F.
,
Maamri
,
R.
, and
Harous
,
S.
,
2019
, “
FA–QABC–MRTA: A Solution for Solving the Multi-Robot Task Allocation Problem
,”
Intell. Serv. Robot.
,
12
(
4
), pp.
407
418
.
20.
Zhang
,
P.-Y.
,
,
T.-S.
, and
Song
,
L.-B.
,
2004
, “
Soccer Robot Path Planning Based on the Artificial Potential Field Approach With Simulated Annealing; Soccer Robots; Soccer Robots
,”
Robotica
,
22
(
5
), p.
563
.
21.
Zhang
,
Q.
,
Manier
,
H.
, and
Manier
,
M.-A.
,
2012
, “
A Genetic Algorithm With Tabu Search Procedure for Flexible Job Shop Scheduling With Transportation Constraints and Bounded Processing Times
,”
Comput. Oper. Res.
,
39
(
7
), pp.
1713
1723
.
22.
Gendreau
,
M.
,
Hertz
,
A.
, and
Laporte
,
G.
,
1994
, “
A Tabu Search Heuristic for the Vehicle Routing Problem
,”
Manage. Sci.
,
40
(
10
), pp.
1276
1290
.
23.
Thabit
,
S.
, and
Mohades
,
A.
,
2018
, “
Multi-Robot Path Planning Based on Multi-objective Particle Swarm Optimization
,”
IEEE Access
,
7
, pp.
2138
2147
.
24.
Padmanabhan Panchu
,
K.
,
Rajmohair
,
M.
,
Sundar
,
R.
, and
Baskarair
,
R.
,
2018
, “
Multi-objective Optimisation of Multi-Robot Task Allocation With Precedence Constraints
,”
Defence Sci. J.
,
68
(
2
), pp.
175
182
.
25.
Lorpunmanee
,
S.
,
Sap
,
M. N.
,
Abdullah
,
A. H.
, and
Chompoo-inwai
,
C.
,
2007
, “
An Ant Colony Optimization for Dynamic Job Scheduling in Grid Environment
,”
Int. J. Comput. Infor. Eng.
,
1
(
5
), pp.
1343
1350
.
26.
Sánchez-Ante
,
G.
,
Ramos
,
F.
, and
Frausto
,
J.
,
2000
, “Cooperative Simulated Annealing for Path Planning in Multi-Robot Systems BT-MICAI 2000: Advances in Artificial Intelligence,” Mexican International Conference on Artificial Intelligence,
Cairó
,
O.
,
Sucar
,
L. E.
, and
Cantu
,
F. J.
, eds.,
Springer
,
Berlin
, pp.
148
157
.
27.
Balan
,
K.
, and
Luo
,
C.
,
2018
, “
Optimal Trajectory Planning for Multiple Waypoint Path Planning Using Tabu Search
,” 2018 9th IEEE Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON 2018,
IEEE
, pp.
497
501
.
28.
Jaillet
,
L.
, and
Porta
,
J. M.
,
2017
, “Path Planning With Loop Closure Constraints Using an Atlas-Based RRT,”
Robotics Research
,
H.
Christensen
, and
O.
Khatib
, eds., Springer Tracts in Advanced Robotics, Vol.
100
,
Springer
, pp.
345
362
.
29.
Lejeune
,
E.
,
Sarkar
,
S.
, and
Jezequel
,
L.
,
2021
,
A Survey of the Multi-Agent Pathfinding Problem, Technical Report, Accessed July 2021
.
30.
Werfel
,
J.
, and
Nagpal
,
R.
,
2008
, “
Three-Dimensional Construction With Mobile Robots and Modular Blocks
,”
Int. J. Robot. Res.
,
27
(
3–4
), pp.
463
479
.
31.
Werfel
,
J.
,
Petersen
,
K.
, and
Nagpal
,
R.
,
2014
, “
Designing Collective Behavior in a Termite-Inspired Robot Construction Team
,”
Science
,
343
(
6172
), pp.
754
758
.
32.
Sartoretti
,
G.
,
Wu
,
Y.
,
Paivine
,
W.
,
Kumar
,
T. K. S.
,
Koenig
,
S.
, and
Choset
,
H.
,
2019
, “
Distributed Reinforcement Learning for Multi-Robot Decentralized Collective Construction
,”
Distributed Autonomous Robotic Systems
,
N.
Correll
,
M.
Schwager
, and
M.
Otte
, eds., Springer Proceedings in Advanced Robotics, vol. 9.
Springer
,
Cham
, pp.
35
49
.
33.
Ortiz
,
C. L.
,
Vincent
,
R.
, and
Morisset
,
B.
,
2005
, “
Task Inference and Distributed Task Management in the Centibots Robotic System
,” Proceedings of the International Conference on Autonomous Agents, pp.
997
1004
.
34.
Peres
,
J.
,
Rosa
,
P. F. F.
, and
Choren
,
R.
,
2018
, “
A Multi-Agent Architecture for Swarm Robotics Systems
,” Proceedings—2017 IEEE 5th International Symposium on Robotics and Intelligent Sensors, IRIS 2017, pp.
130
135
.
35.
Badreldin
,
M.
,
Hussein
,
A.
, and
Khamis
,
A.
,
2013
, “
A Comparative Study Between Optimization and Market-Based Approaches to Multi-Robot Task Allocation
,”
Adv. Artif. Intell.
,
2013
, pp.
1
11
.
36.
Poudel
,
L.
,
Zhou
,
W.
, and
Sha
,
Z.
,
2020
, “
A Generative Approach for Scheduling Multi-Robot Cooperative Three-Dimensional Printing
,”
ASME J. Comput. Infor. Sci. Eng.
,
20
(
6
), p.
061011
.
37.
Werfel
,
J.
,
Petersen
,
K.
, and
Nagpal
,
R.
,
2011
, “
Distributed Multi-Robot Algorithms for the TERMES 3D Collective Construction System
,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), pp.
1
6
.
38.
Elagandula
,
S.
,
Poudel
,
L.
,
Sha
,
Z.
, and
Zhou
,
W.
,
2020
, “
Multi-Robot Path Planning for Cooperative 3D Printing
,” Proceedings of the ASME 2020 15th International Manufacturing Science and Engineering Conference, p.
V001T01A034
.
39.
Poudel
,
L.
,
Marques
,
L. G.
,
Williams
,
R. A.
,
Hyden
,
Z.
,
Guerra
,
P.
,
Fowler
,
O. L.
,
Moquin
,
S. J.
,
Sha
,
Z.
, and
Zhou
,
W.
,
2022
, “
Toward Swarm Manufacturing: Architecting a Cooperative 3D Printing System
,”
ASME J. Manuf. Sci. Eng.
,
144
(
8
), p.
081004
.
You do not currently have access to this content.