Abstract

The structural design and additive manufacturing (AM) of cross-flow heat exchangers (HXs) are studied. A unit-based design framework is proposed to optimize the channel configuration in order to improve the heat exchange performance (HXP) and meanwhile control the pressure drop (PD) between the fluid inlet and outlet. A gradient-based optimization methodology is employed to drive the design process. Both shape and topology changes are observed during the channel configuration evolution. Moreover, AM printability evaluation is considered and some re-design work is proposed to improve the printability of the designs with respect to the metal laser powder bed fusion (LPBF) process. For an optimized structure from the unit-based design, corner rounding operation is adopted first, specifically to avoid sharp features. Then the building process of the entire HX containing top, bottom caps, side walls, and the optimized thin-walled channels is simulated, and residual deformation is predicted through sequential layer-by-layer analysis. Based on the residual deformation profile, geometrical compensation is implemented to reduce geometrical inaccuracy of the printed HX. In addition, build orientation selection is also studied to avoid overhang issues in some specific unit-based design results. Finally, a mature design scheme for the cross-flow HX can be achieved as the solution that leads to largely improved HXP (e.g., nearly 200% increase), well controlled PD, and enhanced printability with respect to the LPBF AM process.

References

1.
Dbouk
,
T.
,
2017
, “
A Review About the Engineering Design of Optimal Heat Transfer Systems Using Topology Optimization
,”
Appl. Therm. Eng.
,
112
, pp.
841
854
.
2.
Feppon
,
F.
,
Allaire
,
G.
,
Dapogny
,
C.
, and
Jolivet
,
P.
,
2021
, “
Body-Fitted Topology Optimization of 2D and 3D Fluid-to-Fluid Heat Exchangers
,”
Comput. Methods Appl. Mech. Eng.
,
376
, p.
113638
.
3.
Mohammadi
,
M.
,
Abbasi
,
H.
,
Yavarinasab
,
A.
, and
Pourrahmani
,
H.
,
2020
, “
Thermal Optimization of Shell and Tube Heat Exchanger Using Porous Baffles
,”
Appl. Therm. Eng.
,
170
, p.
115005
.
4.
Moon
,
H.
,
McGregor
,
D.
,
Miljkovic
,
N.
, and
King
,
W.
,
2021
, “
Ultra-Power-Dense Heat Exchanger Development Through Genetic Algorithm Design and Additive Manufacturing
,”
Joule
,
5
(
11
), pp.
3045
3056
.
5.
Liang
,
X.
,
Chen
,
Q.
,
Cheng
,
L.
,
Hayduke
,
D.
, and
To
,
A.
,
2019
, “
Modified Inherent Strain Method for Efficient Prediction of Residual Deformation in Direct Metal Laser Sintered Components
,”
Comput. Mech.
,
64
(
6
), pp.
1719
1733
.
6.
Tran
,
H.
,
Chen
,
Q.
,
Mohan
,
J.
, and
To
,
A.
,
2020
, “
A New Method for Predicting Cracking at the Interface Between Solid and Lattice Support During Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
32
, p.
101050
.
7.
Liu
,
J.
,
Gaynor
,
A.
,
Chen
,
S.
,
Kang
,
Z.
,
Suresh
,
K.
,
Takezawa
,
A.
,
Li
,
L.
,
Kato
,
J.
,
Tang
,
J.
,
Wang
,
C. C.
,
Cheng
,
L.
,
Liang
,
X.
and
To
,
A. C.
,
2018
, “
Current and Future Trends in Topology Optimization for Additive Manufacturing
,”
Struct. Multidiscipl. Optim.
,
57
(
6
), pp.
2457
2483
.
8.
Rosen
,
D.
,
2014
, “
Design for Additive Manufacturing: Past, Present, and Future Directions
,”
ASME J. Mech. Des.
,
136
(
9
), p.
090301
.
9.
Kubalak
,
J.
,
Wicks
,
A.
, and
Williams
,
C.
,
2021
, “
Investigation of Parameter Spaces for Topology Optimization With Three-Dimensional Orientation Fields for Multi-Axis Additive Manufacturing
,”
ASME J. Mech. Des.
,
143
(
5
), p.
051701
.
10.
Mezzadri
,
F.
,
Bouriakov
,
V.
, and
Qian
,
X.
,
2018
, “
Topology Optimization of Self-Supporting Support Structures for Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
666
682
.
11.
Liang
,
X.
,
To
,
A.
,
Du
,
J.
, and
Zhang
,
Y.
,
2021
, “
Topology Optimization of Phononic-Like Structures Using Experimental Material Interpolation Model for Additive Manufactured Lattice Infills
,”
Comput. Methods Appl. Mech. Eng.
,
377
, p.
113717
.
12.
Takezawa
,
A.
,
To
,
A.
,
Chen
,
Q.
,
Liang
,
X.
,
Dugast
,
F.
,
Zhang
,
X.
, and
Kitamura
,
M.
,
2020
, “
Sensitivity Analysis and Lattice Density Optimization for Sequential Inherent Strain Method Used in Additive Manufacturing Process
,”
Comput. Methods Appl. Mech. Eng.
,
370
, p.
113231
.
13.
Liang
,
X.
,
Cheng
,
L.
,
Chen
,
Q.
,
Yang
,
Q.
, and
To
,
A.
,
2018
, “
A Modified Method for Estimating Inherent Strains From Detailed Process Simulation for Fast Residual Distortion Prediction of Single-Walled Structures Fabricated by Directed Energy Deposition
,”
Addit. Manuf.
,
23
, pp.
471
486
.
14.
Chen
,
Q.
,
Liang
,
X.
,
Hayduke
,
D.
,
Liu
,
J.
,
Cheng
,
L.
,
Oskin
,
J.
,
Whitmore
,
R.
, and
To
,
A.
,
2019
, “
An Inherent Strain Based Multiscale Modeling Framework for Simulating Part-Scale Residual Deformation for Direct Metal Laser Sintering
,”
Addit. Manuf.
,
28
, pp.
406
418
.
15.
Chowdhury
,
S.
,
Mhapsekar
,
K.
, and
Anand
,
S.
,
2018
, “
Part Build Orientation Optimization and Neural Network-Based Geometry Compensation for Additive Manufacturing Process
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031009
.
16.
Chahal
,
V.
, and
Taylor
,
R. M.
,
2020
, “
A Review of Geometric Sensitivities in Laser Metal 3D Printing
,”
Virtual Phys. Prototyp.
,
15
(
2
), pp.
227
241
.
17.
Hughes
,
T.
,
Cottrell
,
J.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39
), pp.
4135
4195
.
18.
Bazilevs
,
Y.
,
Calo
,
V.
,
Hughes
,
T.
, and
Zhang
,
Y.
,
2008
, “
Isogeometric Fluid-Structure Interaction: Theory, Algorithms, and Computations
,”
Comput. Mech.
,
43
(
1
), pp.
3
37
.
19.
Casquero
,
H.
,
Wei
,
X.
,
Toshniwal
,
D.
,
Li
,
A.
,
Hughes
,
T.
,
Kiendl
,
J.
, and
Zhang
,
Y.
,
2020
, “
Seamless Integration of Design and Kirchhoff-Love Shell Analysis Using Analysis-Suitable Unstructured T-Splines
,”
Comput. Methods Appl. Mech. Eng.
,
360
, p.
112765
.
20.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
21.
Liang
,
X.
,
Li
,
A.
,
Rollett
,
A.
, and
Zhang
,
Y.
,
2022
, “
An Isogeometric Analysis Based Topology Optimization Framework for 2D Cross-Flow Heat Exchangers With Manufacturability Constraints
,”
Eng. Comput.
, pp.
1
24
.
22.
Casquero
,
H.
,
Zhang
,
Y.
,
Bona-Casas
,
C.
,
Dalcin
,
L.
, and
Gomez
,
H.
,
2018
, “
Non-Body-Fitted Fluid–Structure Interaction: Divergence-Conforming B-Splines, Fully-Implicit Dynamics, and Variational Formulation
,”
J. Comput. Phys.
,
374
, pp.
625
653
.
23.
Li
,
A.
,
Chai
,
X.
,
Yang
,
G.
, and
Jessica Zhang
,
Y.
,
2019
, “
An Isogeometric Analysis Computational Platform for Material Transport Simulations in Complex Neurite Networks
,”
Mol. Cell. Biomech.
,
16
(
2
), pp.
123
140
.
24.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
,
15
(
2
), pp.
299
305
.
25.
Soylemez
,
E.
,
Koc
,
E.
, and
Coskun
,
M.
,
2019
, “
Thermo-mechanical Simulations of Selective Laser Melting for AlSi10Mg Alloy to Predict the Part-Scale Deformations
,”
Prog. Addit. Manuf.
,
4
(
4
), pp.
465
478
.
26.
Towns
,
J.
,
Cockerill
,
T.
,
Dahan
,
M.
,
Foster
,
I.
,
Gaither
,
K.
,
Grimshaw
,
A.
,
Hazlewood
,
V.
,
Lathrop
,
S.
,
Lifka
,
D.
,
Peterson
,
G. D.
, and
Roskies
,
R.
,
2014
, “
XSEDE: Accelerating Scientific Discovery
,”
Comput. Sci. Eng.
,
16
(
5
), pp.
62
74
.
27.
Mekki
,
B. S.
,
Langer
,
J.
, and
Lynch
,
S.
,
2021
, “
Genetic Algorithm Based Topology Optimization of Heat Exchanger Fins Used in Aerospace Applications
,”
Int. J. Heat Mass Transfer
,
170
, p.
121002
.
28.
Liang
,
X.
,
Dong
,
W.
,
Chen
,
Q.
, and
To
,
A.
,
2021
, “
On Incorporating Scanning Strategy Effects Into the Modified Inherent Strain Modeling Framework for Laser Powder Bed Fusion
,”
Addit. Manuf.
,
37
, p.
101648
.
29.
Nguyen
,
L.
,
Buhl
,
J.
,
Israr
,
R.
, and
Bambach
,
M.
,
2021
, “
Analysis and Compensation of Shrinkage and Distortion in Wire-Arc Additive Manufacturing of Thin-Walled Curved Hollow Sections
,”
Addit. Manuf.
,
47
, p.
102365
.
30.
Shange
,
M.
,
Yadroitsava
,
I.
,
du Plessis
,
A.
, and
Yadroitsev
,
I.
,
2022
, “
Roughness and Near-Surface Porosity of Unsupported Overhangs Produced by High-Speed Laser Powder Bed Fusion
,”
3D Print. Addit. Manuf.
,
9
(
4
), pp.
288
300
.
31.
Wu
,
Z.
,
Narra
,
S.
, and
Rollett
,
A.
,
2020
, “
Exploring the Fabrication Limits of Thin-Wall Structures in a Laser Powder Bed Fusion Process
,”
Int. J. Adv. Manuf. Technol.
,
110
(
1
), pp.
191
207
.
You do not currently have access to this content.