Abstract

Fracture modeling of metallic alloys with microscopic pores relies on multiscale damage simulations which typically ignore the manufacturing-induced spatial variabilities in porosity. This simplification is made because of the prohibitive computational expenses of explicitly modeling spatially varying microstructures in a macroscopic part. To address this challenge and open the doors for the fracture-aware design of multiscale materials, we propose a data-driven framework that integrates a mechanistic reduced-order model (ROM) with a calibration scheme based on random processes. Our ROM drastically accelerates direct numerical simulations (DNS) by using a stabilized damage algorithm and systematically reducing the degrees of freedom via clustering. Since clustering affects local strain fields and hence the fracture response, we calibrate the ROM by constructing a multifidelity random process based on latent map Gaussian processes (LMGPs). In particular, we use LMGPs to calibrate the damage parameters of an ROM as a function of microstructure and clustering (i.e., fidelity) level such that the ROM faithfully surrogates DNS. We demonstrate the application of our framework in predicting the damage behavior of a multiscale metallic component with spatially varying porosity. Our results indicate that microstructural porosity can significantly affect the performance of macro-components and hence must be considered in the design process.

References

1.
Oune
,
N.
, and
Bostanabad
,
R.
,
2021
, “
Latent Map Gaussian Processes for Mixed Variable Metamodeling
,”
Comput. Methods Appl. Mech. Eng.
,
387
, p.
114128
.
2.
Eweis-Labolle
,
J. T.
,
Oune
,
N.
, and
Bostanabad
,
R.
,
2022
, “
Data Fusion With Latent Map Gaussian Processes
,”
ASME J. Mech. Des.
,
144
(
9
), p.
091703
.
3.
Dvorak
,
G. J.
,
1992
, “
Transformation Field Analysis of Inelastic Composite Materials
,”
Proc. R. Soc. London, A
,
437
(
1900
), pp.
311
327
.
4.
Michel
,
J. C.
, and
Suquet
,
P.
,
2003
, “
Nonuniform Transformation Field Analysis
,”
Int. J. Solids Struct.
,
40
(
25
), pp.
6937
6955
.
5.
Roussette
,
S.
,
Michel
,
J. C.
, and
Suquet
,
P.
,
2009
, “
Nonuniform Transformation Field Analysis of Elastic–Viscoplastic Composites
,”
Compos. Sci. Technol.
,
69
(
1
), pp.
22
27
.
6.
Liu
,
Z.
,
Bessa
,
M. A.
, and
Liu
,
W. K.
,
2016
, “
Self-Consistent Clustering Analysis: An Efficient Multi-scale Scheme for Inelastic Heterogeneous Materials
,”
Comput. Methods Appl. Mech. Eng.
,
306
, pp.
319
341
.
7.
Cheng
,
G.
,
Li
,
X.
,
Nie
,
Y.
, and
Li
,
H.
,
2019
, “
FEM-Cluster Based Reduction Method for Efficient Numerical Prediction of Effective Properties of Heterogeneous Material in Nonlinear Range
,”
Comput. Methods Appl. Mech. Eng.
,
348
, pp.
157
184
.
8.
Deng
,
S.
,
Soderhjelm
,
C.
,
Apelian
,
D.
, and
Bostanabad
,
R.
,
2022
, “
Reduced-Order Multiscale Modeling of Plastic Deformations in 3D Alloys With Spatially Varying Porosity by Deflated Clustering Analysis
,”
Comput. Mech.
,
70
(
3
), pp.
517
548
.
9.
Liu
,
Z.
,
Fleming
,
M.
, and
Liu
,
W. K.
,
2018
, “
Microstructural Material Database for Self-consistent Clustering Analysis of Elastoplastic Strain Softening Materials
,”
Comput. Methods Appl. Mech. Eng.
,
330
, pp.
547
577
.
10.
Miehe
,
C.
,
1996
, “
Numerical Computation of Algorithmic (Consistent) Tangent Moduli in Large-Strain Computational Inelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
134
(
3
), pp.
223
240
.
11.
Kouznetsova
,
V.
,
Brekelmans
,
W. A. M.
, and
Baaijens
,
F. P. T.
,
2001
, “
An Approach to Micro–Macro Modeling of Heterogeneous Materials
,”
Comput. Mech.
,
27
(
1
), pp.
37
48
.
12.
Tang
,
S.
,
Zhang
,
L.
, and
Liu
,
W. K.
,
2018
, “
From Virtual Clustering Analysis to Self-consistent Clustering Analysis: A Mathematical Study
,”
Comput. Mech.
,
62
(
6
), pp.
1443
1460
.
13.
Ackermann
,
M. R.
,
Blömer
,
J.
,
Kuntze
,
D.
, and
Sohler
,
C.
,
2014
, “
Analysis of Agglomerative Clustering
,”
Algorithmica
,
69
(
1
), pp.
184
215
.
14.
Likas
,
A.
,
Vlassis
,
N.
, and
Verbeek
,
J. J.
,
2003
, “
The Global k-Means Clustering Algorithm
,”
Pattern Recognit.
,
36
(
2
), pp.
451
461
.
15.
Liu
,
G. R.
,
2002
,
Mesh Free Methods: Moving Beyond the Finite Element Method
, 1st ed.,
CRC Press
,
Boca Raton, FL
.
16.
Yadav
,
P.
, and
Suresh
,
K.
,
2014
, “
Large Scale Finite Element Analysis Via Assembly-Free Deflated Conjugate Gradient
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
4
), p.
041008
.
17.
Rasmussen
,
C. E.
,
2004
, “
Gaussian Processes in Machine Learning
,”
Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February 2–14, 2003
, Tübingen, Germany, Aug. 4–16, 2003, Revised Lectures,
O.
Bousquet
,
U.
von Luxburg
, and
G.
Rätsch
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
63
71
.
18.
Bostanabad
,
R.
,
Chan
,
Y.-C.
,
Wang
,
L.
,
Zhu
,
P.
, and
Chen
,
W.
,
2019
, “
Globally Approximate Gaussian Processes for Big Data With Application to Data-Driven Metamaterials Design
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111402
.
19.
Planas
,
R.
,
Oune
,
N.
, and
Bostanabad
,
R.
,
2020
, “
Extrapolation With Gaussian Random Processes and Evolutionary Programming
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Vol. 84003
,
Virtual
,
Aug. 17–19
.
20.
Planas
,
R.
,
Oune
,
N.
, and
Bostanabad
,
R.
,
2021
, “
Evolutionary Gaussian Processes
,”
ASME J. Mech. Des.
,
143
(
11
), p. 111703.
21.
MATLAB
,
2010
, Version 7.10.0 (R2010a), The MathWorks Inc., Natick, MA.
22.
Bostanabad
,
R.
,
Zhang
,
Y.
,
Li
,
X.
,
Kearney
,
T.
,
Brinson
,
L. C.
,
Apley
,
D. W.
,
Liu
,
W. K.
, and
Chen
,
W.
,
2018
, “
Computational Microstructure Characterization and Reconstruction: Review of the State-of-the-Art Techniques
,”
Prog. Mater. Sci.
,
95
, pp.
1
41
.
23.
Deng
,
S.
,
Soderhjelm
,
C.
,
Apelian
,
D.
, and
Suresh
,
K.
,
2021
, “
Estimation of Elastic Behaviors of Metal Components Containing Process Induced Porosity
,”
Comput. Struct.
,
254
, p.
106558
.
24.
Deng
,
S.
,
Soderhjelm
,
C.
,
Apelian
,
D.
, and
Suresh
,
K.
, “
Second-Order Defeaturing Estimator of Manufacturing-Induced Porosity on Structural Elasticity
,”
Int. J. Numer. Methods Eng.
,
123
(
19
), pp.
4483
4517
.
25.
Deng
,
S.
,
Apelian
,
D.
, and
Bostanabad
,
R.
,
2022
, “Concurrent Multiscale Damage Analysis With Adaptive Spatiotemporal Dimension Reduction,”
arXiv
, May 24. https://arxiv.org/abs/2205.12149
26.
Youn
,
B. D.
,
Jung
,
B. C.
,
Xi
,
Z.
,
Kim
,
S. B.
, and
Lee
,
W. R.
,
2011
, “
A Hierarchical Framework for Statistical Model Calibration in Engineering Product Development
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
13
), pp.
1421
1431
.
27.
Olleak
,
A.
, and
Xi
,
Z.
,
2020
, “
Calibration and Validation Framework for Selective Laser Melting Process Based on Multi-fidelity Models and Limited Experiment Data
,”
ASME J. Mech. Des.
,
142
(
8
), p.
081701
.
28.
Bostanabad
,
R.
,
Liang
,
B.
,
Gao
,
J.
,
Liu
,
W. K.
,
Cao
,
J.
,
Zeng
,
D.
,
Su
,
X.
,
Xu
,
H.
,
Li
,
Y.
, and
Chen
,
W.
,
2018
, “
Uncertainty Quantification in Multiscale Simulation of Woven Fiber Composites
,”
Comput. Methods Appl. Mech. Eng.
,
338
, pp.
506
532
.
You do not currently have access to this content.