Abstract

Deep generative models have demonstrated effectiveness in learning compact and expressive design representations that significantly improve geometric design optimization. However, these models do not consider the uncertainty introduced by manufacturing or fabrication. The past work that quantifies such uncertainty often makes simplifying assumptions on geometric variations, while the “real-world,” “free-form” uncertainty and its impact on design performance are difficult to quantify due to the high dimensionality. To address this issue, we propose a generative adversarial network-based design under uncertainty framework (GAN-DUF), which contains a deep generative model that simultaneously learns a compact representation of nominal (ideal) designs and the conditional distribution of fabricated designs given any nominal design. This opens up new possibilities of (1) building a universal uncertainty quantification model compatible with both shape and topological designs, (2) modeling free-form geometric uncertainties without the need to make any assumptions on the distribution of geometric variability, and (3) allowing fast prediction of uncertainties for new nominal designs. We can combine the proposed deep generative model with robust design optimization or reliability-based design optimization for design under uncertainty. We demonstrated the framework on two real-world engineering design examples and showed its capability of finding the solution that possesses better performance after fabrication.

References

1.
Chen
,
W.
,
Chiu
,
K.
, and
Fuge
,
M. D.
,
2020
, “
Airfoil Design Parameterization and Optimization Using Bézier Generative Adversarial Networks
,”
AIAA. J.
,
58
(
11
), pp.
4723
4735
.
2.
Chen
,
W.
, and
Ramamurthy
,
A.
,
2021
, “
Deep Generative Model for Efficient 3D Airfoil Parameterization and Generation
,”
AIAA Scitech 2021 Forum
,
San Diego, CA
,
Jan. 11–15 & 19–21
, p.
1690
.
3.
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
Mo-Padgan: Reparameterizing Engineering Designs for Augmented Multi-Objective Optimization
,”
Appl. Soft. Comput.
,
113
, p.
107909
.
4.
Chen
,
S.
,
Chen
,
W.
, and
Lee
,
S.
,
2010
, “
Level Set Based Robust Shape and Topology Optimization Under Random Field Uncertainties
,”
Struct. Multidiscipl. Optim.
,
41
(
4
), pp.
507
524
.
5.
Chen
,
S.
, and
Chen
,
W.
,
2011
, “
A New Level-Set Based Approach to Shape and Topology Optimization Under Geometric Uncertainty
,”
Struct. Multidiscipl. Optim.
,
44
(
1
), pp.
1
18
.
6.
Wang
,
E. W.
,
Sell
,
D.
,
Phan
,
T.
, and
Fan
,
J. A.
,
2019
, “
Robust Design of Topology-Optimized Metasurfaces
,”
Opt. Mater. Express.
,
9
(
2
), pp.
469
482
.
7.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Advances in Neural Information Processing Systems
,
Montréal, Canada
,
Dec. 8–13
, pp.
2672
2680
.
8.
Chen
,
X.
,
Duan
,
Y.
,
Houthooft
,
R.
,
Schulman
,
J.
,
Sutskever
,
I.
, and
Abbeel
,
P.
,
2016
, “
Infogan: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
,”
Advances in Neural Information Processing Systems
,
Barcelona, Spain
,
Dec. 5–10
, pp.
2172
2180
.
9.
Chen
,
W.
, and
Fuge
,
M.
,
2019
, “
Synthesizing Designs With Interpart Dependencies Using Hierarchical Generative Adversarial Networks
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111403
.
10.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
,
2004
, “
An Integrated Framework for Optimization Under Uncertainty Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
562
570
.
11.
Rozvany
,
G. I. N.
, and
Lewiński
,
T.
,
2014
,
Topology Optimization in Structural and Continuum Mechanics
,
Springer
,
Wien
, pp.
457
471
.
12.
Chen
,
W.
,
Allen
,
J.
,
Tsui
,
K.-L.
, and
Mistree
,
F.
,
1996
, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
,
118
(
4
), pp.
478
485
.
13.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
14.
Choi
,
S.-K.
,
Canfield
,
R. A.
, and
Grandhi
,
R. V.
,
2007
,
Reliability-Based Structural Optimization
,
Springer
,
London
.
15.
Baudoui
,
V.
,
Klotz
,
P.
,
Hiriart-Urruty
,
J.-B.
,
Jan
,
S.
, and
Morel
,
F.
,
2012
, “
Local Uncertainty Processing (LOUP) Method for Multidisciplinary Robust Design Optimization
,”
Struct. Multidiscipl. Optim.
,
46
(
5
), pp.
711
726
.
16.
da Silva
,
G. A.
,
Beck
,
A. T.
, and
Sigmund
,
O.
,
2019
, “
Stress-Constrained Topology Optimization Considering Uniform Manufacturing Uncertainties
,”
Comput. Methods. Appl. Mech. Eng.
,
344
, pp.
512
537
.
17.
Sigmund
,
O.
,
2009
, “
Manufacturing Tolerant Topology Optimization
,”
Acta. Mech. Sin.
,
25
(
2
), pp.
227
239
.
18.
Morris
,
C.
,
Bekker
,
L.
,
Haberman
,
M. R.
, and
Seepersad
,
C. C.
,
2018
, “
Design Exploration of Reliably Manufacturable Materials and Structures With Applications to Negative Stiffness Metamaterials and Microstereolithography
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111415
.
19.
Wiest
,
T.
,
Seepersad
,
C. C.
, and
Haberman
,
M. R.
,
2022
, “
Robust Design of an Asymmetrically Absorbing Willis Acoustic Metasurface Subject to Manufacturing-Induced Dimensional Variations
,”
J. Acoust. Soc. Am.
,
151
(
1
), pp.
216
231
.
20.
Lazarov
,
B. S.
,
Schevenels
,
M.
, and
Sigmund
,
O.
,
2012
, “
Topology Optimization With Geometric Uncertainties by Perturbation Techniques
,”
Int. J. Numer. Methods Eng.
,
90
(
11
), pp.
1321
1336
.
21.
Lazarov
,
B. S.
,
Schevenels
,
M.
, and
Sigmund
,
O.
,
2012
, “
Topology Optimization Considering Material and Geometric Uncertainties Using Stochastic Collocation Methods
,”
Struct. Multidiscipl. Optim.
,
46
(
4
), pp.
597
612
.
22.
Keshavarzzadeh
,
V.
,
Fernandez
,
F.
, and
Tortorelli
,
D. A.
,
2017
, “
Topology Optimization Under Uncertainty Via Non-Intrusive Polynomial Chaos Expansion
,”
Comput. Methods. Appl. Mech. Eng.
,
318
, pp.
120
147
.
23.
Kang
,
Z.
, and
Liu
,
P.
,
2018
, “
Reliability-Based Topology Optimization Against Geometric Imperfections With Random Threshold Model
,”
Int. J. Numer. Methods Eng.
,
115
(
1
), pp.
99
116
.
24.
Huang
,
Q.
,
Nouri
,
H.
,
Xu
,
K.
,
Chen
,
Y.
,
Sosina
,
S.
, and
Dasgupta
,
T.
,
2014
, “
Statistical Predictive Modeling and Compensation of Geometric Deviations of Three-Dimensional Printed Products
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061008
.
25.
Huang
,
Q.
,
Zhang
,
J.
,
Sabbaghi
,
A.
, and
Dasgupta
,
T.
,
2015
, “
Optimal Offline Compensation of Shape Shrinkage for Three-Dimensional Printing Processes
,”
Iie Trans.
,
47
(
5
), pp.
431
441
.
26.
Sabbaghi
,
A.
,
Huang
,
Q.
, and
Dasgupta
,
T.
,
2018
, “
Bayesian Model Building From Small Samples of Disparate Data for Capturing In-Plane Deviation in Additive Manufacturing
,”
Technometrics
,
60
(
4
), pp.
532
544
.
27.
Ferreira
,
R. d. S. B.
,
Sabbaghi
,
A.
, and
Huang
,
Q.
,
2019
, “
Automated Geometric Shape Deviation Modeling for Additive Manufacturing Systems Via Bayesian Neural Networks
,”
IEEE Trans. Autom. Sci. Eng.
,
17
(
2
), pp.
584
598
.
28.
Pham
,
T.
,
Kwon
,
P.
, and
Foster
,
S.
,
2021
, “
Additive Manufacturing and Topology Optimization of Magnetic Materials for Electrical Machines—A Review
,”
Energies
,
14
(
2
), p.
283
.
29.
Sederberg
,
T. W.
, and
Parry
,
S. R.
,
1986
, “
Free-Form Deformation of Solid Geometric Models
,”
Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques
,
New York
,
Aug. 18–22
, pp.
151
160
.
30.
Boggs
,
P. T.
, and
Tolle
,
J. W.
,
1995
, “
Sequential Quadratic Programming
,”
Acta Numerica
,
4
(
1
), pp.
1
51
.
31.
Economon
,
T. D.
,
Palacios
,
F.
,
Copeland
,
S. R.
,
Lukaczyk
,
T. W.
, and
Alonso
,
J. J.
,
2016
, “
Su2: An Open-Source Suite for Multiphysics Simulation and Design
,”
AIAA. J.
,
54
(
3
), pp.
828
846
.
32.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.
33.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
34.
Fisher
,
R. A.
,
1936
, “
Design of Experiments
,”
Br. Med. J.
,
1
(
3923
), p.
554
.
35.
Chen
,
H.-T.
,
Taylor
,
A. J.
, and
Yu
,
N.
,
2016
, “
A Review of Metasurfaces: Physics and Applications
,”
Rep. Prog. Phys.
,
79
(
7
), p.
076401
.
36.
Bukhari
,
S. S.
,
Vardaxoglou
,
J. Y.
, and
Whittow
,
W.
,
2019
, “
A Metasurfaces Review: Definitions and Applications
,”
Appl. Sci.
,
9
(
13
), p.
2727
.
37.
Liu
,
X.
,
Fan
,
K.
,
Shadrivov
,
I. V.
, and
Padilla
,
W. J.
,
2017
, “
Experimental Realization of a Terahertz All-Dielectric Metasurface Absorber
,”
Opt. Express
,
25
(
1
), pp.
191
201
.
38.
Larouche
,
S.
,
Tsai
,
Y.-J.
,
Tyler
,
T.
,
Jokerst
,
N. M.
, and
Smith
,
D. R.
,
2012
, “
Infrared Metamaterial Phase Holograms
,”
Nat. Mater.
,
11
(
5
), pp.
450
454
.
39.
Azad
,
A. K.
,
Kort-Kamp
,
W. J.
,
Sykora
,
M.
,
Weisse-Bernstein
,
N. R.
,
Luk
,
T. S.
,
Taylor
,
A. J.
,
Dalvit
,
D. A.
, and
Chen
,
H. -T.
,
2016
, “
Metasurface Broadband Solar Absorber
,”
Sci. Rep.
,
6
(
1
), pp.
1
6
.
40.
Whiting
,
E. B.
,
Campbell
,
S. D.
,
Kang
,
L.
, and
Werner
,
D. H.
,
2020
, “
Meta-Atom Library Generation Via an Efficient Multi-Objective Shape Optimization Method
,”
Opt. Express
,
28
(
16
), pp.
24229
24242
.
41.
Zimmerman
,
W. B. J.
,
2006
,
Multiphysics Modeling with Finite Element Methods
,
World Scientific
,
Singapore
, pp.
1
26
.
42.
Shu
,
D. W.
,
Park
,
S. W.
, and
Kwon
,
J.
,
2019
, “
3d Point Cloud Generative Adversarial Network Based on Tree Structured Graph Convolutions
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Seoul, South Korea
,
Oct. 27–Nov. 2
, pp.
3859
3868
.
You do not currently have access to this content.