Abstract

Many datasets in engineering applications are heterogeneous mixtures of noise-free data, noisy data with known noise variances, and noisy data with unknown noise variances. This article proposes a data fusion method called the multi-type data fusion (MTDF) model, which fully utilizes the information provided by each of these types of data. To capture the underlying trend implied in the multiple types of data, the method approximately interpolates the noise-free data, while regressing the noisy data. The prediction accuracy of the MTDF model is compared with those of various surrogate models (interpolation models, regression models, and multi-fidelity models) on both numerical and practical engineering problems. In the experiments, the proposed MTDF model demonstrates higher performance than the other benchmark models. The effects of noise level and sample size of the noise-free data on the model performance are investigated, along with the robustness of the MTDF model. The results demonstrate the satisfactory feasibility, practicality, and stability of the MTDF.

References

1.
Forrester
,
A. I.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization via Surrogate Modelling
,”
Proc. R. Soc. A
,
463
(
2088
), pp.
3251
3269
.
2.
Tang
,
Y.
,
Long
,
T.
,
Shi
,
R.
,
Wu
,
Y.
, and
Gary Wang
,
G.
,
2020
, “
Sequential Radial Basis Function-Based Optimization Method Using Virtual Sample Generation
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111701
.
3.
Wang
,
Y.
,
Hao
,
P.
,
Guo
,
Z.
,
Liu
,
D.
, and
Gao
,
Q.
,
2020
, “
Reliability-Based Design Optimization of Complex Problems With Multiple Design Points via Narrowed Search Region
,”
ASME J. Mech. Des.
,
142
(
6
), p.
061702
.
4.
Bostanabad
,
R.
,
Chan
,
Y. C.
,
Wang
,
L.
,
Zhu
,
P.
, and
Chen
,
W.
,
2019
, “
Globally Approximate Gaussian Processes for Big Data With Application to Data-Driven Metamaterials Design
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111402
.
5.
Yang
,
Z.
,
Li
,
X.
,
Catherine Brinson
,
L.
,
Choudhary
,
A. N.
,
Chen
,
W.
, and
Agrawal
,
A.
,
2018
, “
Microstructural Materials Design via Deep Adversarial Learning Methodology
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111416
.
6.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2018
, “
Adaptive Surrogate Modeling for Time-Dependent Multidisciplinary Reliability Analysis
,”
ASME J. Mech. Des.
,
140
(
2
), p.
021401
.
7.
Wang
,
Z.
, and
Wang
,
P.
,
2015
, “
An Integrated Performance Measure Approach for System Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021406
.
8.
Lai
,
X.
,
Wang
,
S.
,
Guo
,
Z.
,
Zhang
,
C.
,
Sun
,
W.
, and
Song
,
X.
,
2021
, “
Designing a Shape–Performance Integrated Digital Twin Based on Multiple Models and Dynamic Data: A Boom Crane Example
,”
ASME J. Mech. Des.
,
143
(
7
), p.
071703
.
9.
Chen
,
W.
,
Yin
,
X.
,
Lee
,
S.
, and
Liu
,
W. K.
,
2010
, “
A Multiscale Design Methodology for Hierarchical Systems With Random Field Uncertainty
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041006
.
10.
Hu
,
J.
,
Jiang
,
P.
,
Zhou
,
Q.
,
McKeand
,
A.
, and
Choi
,
S. K.
,
2020
, “
Model Validation Methods for Multiple Correlated Responses via Covariance-Overlap Based Distance
,”
ASME J. Mech. Des.
,
142
(
4
), p.
041401
.
11.
Papila
,
M.
, and
Haftka
,
R. T.
,
2000
, “
Response Surface Approximations: Noise, Error Repair, and Modeling Errors
,”
AIAA J.
,
38
(
12
), pp.
2336
2343
.
12.
Qiu
,
N.
,
Gao
,
Y.
,
Fang
,
J.
,
Sun
,
G.
,
Li
,
Q.
, and
Kim
,
N. H.
,
2018
, “
Crashworthiness Optimization with Uncertainty From Surrogate Model and Numerical Error
,”
Thin-Walled Struct.
,
129
(
5
), pp.
457
472
.
13.
Wiebenga
,
J. H.
, and
van den Boogaard
,
A. H.
,
2014
, “
On the Effect of Numerical Noise in Approximate Optimization of Forming Processes Using Numerical Simulations
,”
Int. J. Mater. Form.
,
7
(
3
), pp.
317
335
.
14.
Kim
,
H.
,
Papila
,
M.
,
Mason
,
W. H.
,
Haftka
,
R. T.
,
Watson
,
L. T.
, and
Grossman
,
B.
,
2001
, “
Detection and Repair of Poorly Converged Optimization Runs
,”
AIAA J.
,
39
(
12
), pp.
2242
2249
.
15.
Forrester
,
A. I.
,
Keane
,
A. J.
, and
Bressloff
,
N. W.
,
2006
, “
Design and Analysis of “Noisy” Computer Experiments
,”
AIAA J.
,
44
(
10
), pp.
2331
2339
.
16.
Chen
,
L.
,
Qiu
,
H.
,
Jiang
,
C.
,
Xiao
,
M.
, and
Gao
,
L.
,
2018
, “
Support Vector Enhanced Kriging for Metamodeling With Noisy Data
,”
Struct. Multidiscipl. Optim.
,
57
(
4
), pp.
1611
1623
.
17.
Smola
,
A. J.
, and
Schölkopf
,
B.
,
2004
, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
,
14
(
3
), pp.
199
222
.
18.
Poggio
,
T.
, and
Girosi
,
F.
,
1990
, “
Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks
,”
Sci.
,
247
(
4945
), pp.
978
982
.
19.
Keane
,
A. J.
, and
Nair
,
P. B.
,
2005
,
Computational Approaches for Aerospace Design: The Pursuit of Excellence
,
John Wiley & Sons
,
Hoboken, NJ
.
20.
Hevesi
,
J. A.
,
Flint
,
A. L.
, and
Istok
,
J. D.
,
1992
, “
Precipitation Estimation in Mountainous Terrain Using Multivariate Geostatistics. Part II: Isohyetal Maps
,”
J. Appl. Meteorol.
,
31
(
7
), pp.
677
688
.
21.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.
22.
Shu
,
L.
,
Jiang
,
P.
,
Zhou
,
Q.
, and
Xie
,
T.
,
2019
, “
An Online Variable-Fidelity Optimization Approach for Multi-Objective Design Optimization
,”
Struct. Multidiscipl. Optim.
,
60
(
3
), pp.
1059
1077
.
23.
Zhou
,
Q.
,
Wang
,
Y.
,
Choi
,
S. K.
,
Jiang
,
P.
,
Shao
,
X.
,
Hu
,
J.
, and
Shu
,
L.
,
2018
, “
A Robust Optimization Approach Based on Multi-Fidelity Metamodel
,”
Struct. Multidiscipl. Optim.
,
57
(
2
), pp.
775
797
.
24.
Nguyen
,
N. V.
,
Choi
,
S. M.
,
Kim
,
W. S.
,
Lee
,
J. W.
,
Kim
,
S.
,
Neufeld
,
D.
, and
Byun
,
Y. H.
,
2013
, “
Multidisciplinary Unmanned Combat Air Vehicle System Design Using Multi-Fidelity Model
,”
Aerosp. Sci. Technol.
,
26
(
1
), pp.
200
210
.
25.
Wang
,
F.
,
Xiong
,
F.
,
Chen
,
S.
, and
Song
,
J.
,
2019
, “
Multi-Fidelity Uncertainty Propagation Using Polynomial Chaos and Gaussian Process Modeling
,”
Struct. Multidiscipl. Optim.
,
60
(
4
), pp.
1583
1604
.
26.
Cai
,
X.
,
Qiu
,
H.
,
Gao
,
L.
, and
Shao
,
X.
,
2017
, “
Metamodeling for High Dimensional Design Problems by Multi-Fidelity Simulations
,”
Struct. Multidiscipl. Optim.
,
56
(
1
), pp.
151
166
.
27.
Durantin
,
C.
,
Rouxel
,
J.
,
Désidéri
,
J. A.
, and
Glière
,
A.
,
2017
, “
Multifidelity Surrogate Modeling Based on Radial Basis Functions
,”
Struct. Multidiscipl. Optim.
,
56
(
5
), pp.
1061
1075
.
28.
Li
,
X.
,
Gao
,
W.
,
Gu
,
L.
,
Gong
,
C.
,
Jing
,
Z.
, and
Su
,
H.
,
2017
, “
A Cooperative Radial Basis Function Method for Variable-Fidelity Surrogate Modeling
,”
Struct. Multidiscipl. Optim.
,
56
(
5
), pp.
1077
1092
.
29.
Zhang
,
Y.
,
Kim
,
N. H.
,
Park
,
C.
, and
Haftka
,
R. T.
,
2018
, “
Multifidelity Surrogate Based on Single Linear Regression
,”
AIAA J.
,
56
(
12
), pp.
4944
4952
.
30.
Ryan
,
T. P.
,
2008
,
Modern Regression Methods
, Vol.
655
,
John Wiley & Sons
,
Hoboken, NJ
.
31.
Greene
,
W. H.
,
2003
,
Econometric Analysis
,
Pearson Education India
,
New Delhi
.
32.
Khuri
,
A. I.
, and
Cornell
,
J. A.
,
2018
,
Response Surfaces: Designs and Analyses
,
Routledge
,
London
.
33.
Hoerl
,
A. E.
, and
Kennard
,
R. W.
,
1970
, “
Ridge Regression: Biased Estimation for Nonorthogonal Problems
,”
Technometrics
,
12
(
1
), pp.
55
67
.
34.
Rasmussen
,
C. E.
,
2003
, “Gaussian Processes in Machine Learning,”
Summer School on Machine Learning
,
Springer
,
Berlin/Heidelberg
, pp.
63
71
.
35.
Chen
,
S.
,
Cowan
,
C. F.
, and
Grant
,
P. M.
,
1991
, “
Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks
,”
IEEE Trans. Neural Netw.
,
2
(
2
), pp.
302
309
.
36.
Mohri
,
M.
,
Rostamizadeh
,
A.
, and
Talwalkar
,
A.
,
2018
,
Foundations of Machine Learning
,
MIT Press
,
Cambridge, MA.
37.
Orr
,
M. J.
,
1996
,
Introduction to Radial Basis Function Networks.
,
Center for Cognitive Science
,
University of Edinburgh
.
38.
Chen
,
C.
,
Yan
,
C.
, and
Li
,
Y.
,
2015
, “
A Robust Weighted Least Squares Support Vector Regression Based on Least Trimmed Squares
,”
Neurocomputing
,
168
(
3
), pp.
941
946
.
39.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design via Surrogate Modelling: A Practical Guide
,
John Wiley & Sons
,
Hoboken, NJ
.
40.
Suykens
,
J. A.
,
De Brabanter
,
J.
,
Lukas
,
L.
, and
Vandewalle
,
J.
,
2002
, “
Weighted Least Squares Support Vector Machines: Robustness and Sparse Approximation
,”
Neurocomputing
,
48
(
1–4
), pp.
85
105
.
41.
David
,
H. A.
,
1998
, “
Early Sample Measures of Variability
,”
Stat. Sci.
,
13
(
4
), pp.
368
377
.
42.
Rousseeuw
,
P. J.
, and
Leroy
,
A. M.
,
2005
,
Robust Regression and Outlier Detection
, Vol.
589
,
John Wiley & Sons
,
Hoboken, NJ
.
43.
Suykens
,
J. A.
, and
Vandewalle
,
J.
,
1999
, “
Least Squares Support Vector Machine Classifiers
,”
Neural Process. Lett.
,
9
(
3
), pp.
293
300
.
44.
Gu
,
C.
, and
Wahba
,
G.
,
1991
, “
Minimizing GCV/GML Scores With Multiple Smoothing Parameters via the Newton Method
,”
SIAM J. Sci. Stat. Comput.
,
12
(
2
), pp.
383
398
.
45.
Orr
,
M. J.
,
1995
, “
Regularization in the Selection of Radial Basis Function Centers
,”
Neural Comput.
,
7
(
3
), pp.
606
623
.
46.
Alvarez Meza
,
A. M.
,
Daza Santacoloma
,
G.
,
Acosta Medina
,
C. D.
, and
Castellanos Dominguez
,
G.
,
2012
, “
Parameter Selection in Least Squares-Support Vector Machines Regression Oriented, Using Generalized Cross-Validation
,”
Dyna
,
79
(
171
), pp.
23
30
.
47.
Song
,
X.
,
Lv
,
L.
,
Sun
,
W.
, and
Zhang
,
J.
,
2019
, “
A Radial Basis Function-Based Multi-Fidelity Surrogate Model: Exploring Correlation Between High-Fidelity and Low-Fidelity Models
,”
Struct. Multidiscipl. Optim.
,
60
(
3
), pp.
965
981
.
48.
Viana
,
F. A.
, and
Goel
,
T.
,
2010
,
Surrogates Toolbox User’s Guide
,
Gainesville, FL
.
49.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Glob. Optim.
,
13
(
4
), pp.
455
492
.
50.
Park
,
C.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2018
, “
Low-Fidelity Scale Factor Improves Bayesian Multi-Fidelity Prediction by Reducing Bumpiness of Discrepancy Function
,”
Struct. Multidiscipl. Optim.
,
58
(
2
), pp.
399
414
.
51.
Mullur
,
A. A.
, and
Messac
,
A.
,
2006
, “
Metamodeling Using Extended Radial Basis Functions: A Comparative Approach
,”
Eng. Comput.
,
21
(
3
), p.
203
217
.
52.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscipl. Optim.
,
23
(
1
), pp.
1
13
.
53.
Olsson
,
A.
,
Sandberg
,
G.
, and
Dahlblom
,
O.
,
2003
, “
On Latin Hypercube Sampling for Structural Reliability Analysis
,”
Struct. Saf.
,
25
(
1
), pp.
47
68
.
54.
Cai
,
X.
,
Qiu
,
H.
,
Gao
,
L.
,
Wei
,
L.
, and
Shao
,
X.
,
2017
, “
Adaptive Radial-Basis-Function-Based Multifidelity Metamodeling for Expensive Black-Box Problems
,”
AIAA J.
,
55
(
7
), pp.
2424
2436
.
You do not currently have access to this content.