Abstract

In this work, robust design optimization (RDO) is treated, motivated by the increasing desire to account for variability in the design phase. The problem is formulated in a multi-objective setting with the objective of simultaneously minimizing the mean of the objective and its variance due to variability of design variables and/or parameters. This allows the designer to choose its robustness level without the need to repeat the optimization as typically encountered when formulated as a single objective. To account for the computational cost that is often encountered in RDO problems, the problem is fitted in a Bayesian optimization framework. The use of surrogate modeling techniques to efficiently solve problems under uncertainty has effectively found its way in the optimization community leading to surrogate-assisted optimization-under-uncertainty schemes. The Gaussian processes, the surrogates on which Bayesian optimization builds, are often considered cheap-to-sample black-boxes and are sampled to obtain the desired quantities of interest. However, since the analytical formulation of these surrogates is known, an analytical treatment of the problem is available. To obtain the quantities of interest without sampling an analytical uncertainty, propagation through the surrogate is presented. The multi-objective Bayesian optimization framework and the analytical uncertainty quantification are linked together through the formulation of the robust expected improvement, obtaining the novel efficient robust global optimization scheme. The method is tested on a series of test cases to examine its behavior for varying difficulties and validated on an aerodynamic test function which proves the effectiveness of the novel scheme.

References

1.
Zang
,
T. A.
,
Hemsch
,
M. J.
,
Hilburger
,
M. W.
,
Kenny
,
S. P.
,
Luckring
,
J. M.
,
Peiman
,
M.
,
Padula
,
S. L.
, and
Stroud
,
W. J.
,
2002
, “
Needs and Opportunities for Uncertainty-Based Multidisciplinary Design Methods for Aerospace Vehicles
,”
Report TM-2002-211462, NASA
.
2.
Lelièvre
,
N.
,
Beaurepaire
,
P.
,
Mattrand
,
C.
,
Gayton
,
N.
, and
Otsmane
,
A.
,
2016
, “
On the Consideration of Uncertainty in Design: Optimization—Reliability—Robustness
,”
Struct. Multidiscipl. Optim.
,
54
(
6
), pp.
1423
1437
.
3.
Huan
,
Z.
,
Zhenghong
,
G.
,
Fang
,
X.
, and
Yidian
,
Z.
,
2019
, “
Review of Robust Aerodynamic Design Optimization for Air Vehicles
,”
Arch. Comput. Methods Eng.
,
26
(
3
), pp.
685
732
.
4.
Hu
,
X.
,
Chen
,
X.
,
Parks
,
G. T.
, and
Yao
,
W.
,
2016
, “
Review of Improved Monte Carlo Methods in Uncertainty-Based Design Optimization for Aerospace Vehicles
,”
Prog. Aerosp. Sci.
,
86
(
1
), pp.
20
27
.
5.
Parnianifard
,
A.
,
Azfanizam
,
A.
,
Ariffin
,
M. K. A. M.
, and
Ismail
,
M. I. S.
,
2018
, “
An Overview on Robust Design Hybrid Metamodeling: Advanced Methodology in Process Optimization Under Uncertainty
,”
Int. J. Ind. Eng. Comput.
,
9
(
1
), pp.
1
32
.
6.
Kanno
,
Y.
,
2020
, “
On Three Concepts in Robust Design Optimization: Absolute Robustness, Relative Robustness, and Less Variance
,”
Struct. Multidiscipl. Optim.
,
62
(
2
), pp.
979
1000
.
7.
Chatterjee
,
T.
,
Chakraborty
,
S.
, and
Chowdhury
,
R.
,
2019
, “
A Critical Review of Surrogate Assisted Robust Design Optimization
,”
Arch. Comput. Methods Eng.
,
26
(
1
), pp.
245
274
.
8.
Shahriari
,
B.
,
Swersky
,
K.
,
Wang
,
Z.
,
Adams
,
R. P.
, and
Freitas
,
N. d.
,
2016
, “
Taking the Human Out of the Loop: A Review of Bayesian Optimization
,”
Proc. IEEE
,
104
(
1
), pp.
148
175
.
9.
Mockus
,
J.
,
Tiesis
,
V.
, and
Zilinskas
,
A.
,
1978
, “The Application of Bayesian Methods for Seeking the Extremum,”
Towards Global Optimization 2: Proceedings of a Workshop at the University of Cagliari, Italy, October 1974
, Vol.
2
,
I. C. W.
Dixon
,
G.
Szego
, eds.,
American Elsevier Publishing Co
,
New York
, pp.
117
129
.
10.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
11.
Girard
,
A.
,
Edward Rasmussen
,
C.
, and
Murray-Smith
,
R.
,
2002
, “
Gaussian Process Priors With Uncertain Inputs: Multiple-Step-Ahead Prediction
.”
Report TR-2002-119, Computing Science Department
.
12.
Persson
,
J. A.
, and
Ölvander
,
J.
,
2017
, “
How to Compare Performance of Robust Design Optimization Algorithms, Including a Novel Method
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
31
(
3
), pp.
286
297
.
13.
Ong
,
Y.-S.
,
Nair
,
P. B.
, and
Lum
,
K. Y.
,
2006
, “
Max–Min Surrogate-Assisted Evolutionary Algorithm for Robust Design
,”
IEEE Trans. Evol. Comput.
,
10
(
4
), pp.
392
404
.
14.
Ray
,
T.
, and
Smith
,
W.
,
2006
, “
A Surrogate Assisted Parallel Multiobjective Evolutionary Algorithm for Robust Engineering Design
,”
Eng. Optim.
,
38
(
8
), pp.
997
1011
.
15.
Zhang
,
J.
,
Taflanidis
,
A. A.
, and
Medina
,
J. C.
,
2017
, “
Sequential Approximate Optimization for Design Under Uncertainty Problems Utilizing Kriging Metamodeling in Augmented Input Space
,”
Comput. Methods Appl. Mech. Eng.
,
315
(
1
), pp.
369
395
.
16.
Zhang
,
J.
, and
Taflanidis
,
A. A.
,
2019
, “
Multi-Objective Optimization for Design Under Uncertainty Problems Through Surrogate Modeling in Augmented Input Space
,”
Struct. Multidiscipl. Optim.
,
59
(
2
), pp.
351
372
.
17.
Yin
,
H.
,
Fang
,
H.
,
Xiao
,
Y.
,
Wen
,
G.
, and
Qing
,
Q.
,
2015
, “
Multi-Objective Robust Optimization of Foam-Filled Tapered Multi-Cell Thin-Walled Structures
,”
Struct. Multidiscipl. Optim.
,
52
(
6
), pp.
1051
1067
.
18.
Sun
,
G.
,
Song
,
X.
,
Baek
,
S.
, and
Li
,
Q.
,
2014
, “
Robust Optimization of Foam-Filled Thin-Walled Structure Based on Sequential Kriging Metamodel
,”
Struct. Multidiscipl. Optim.
,
49
(
6
), pp.
897
913
.
19.
Kwon
,
H.
,
Choi
,
S.
,
Kwon
,
J.-H.
, and
Lee
,
D.
,
2016
, “
Surrogate-Based Robust Optimization and Design to Unsteady Low-Noise Open Rotors
,”
J. Aircraft
,
53
(
5
), pp.
1448
1467
.
20.
Yao
,
W.
,
Tang
,
G.
,
Wang
,
N.
, and
Chen
,
X.
,
2019
, “
An Improved Reliability Analysis Approach Based on Combined Form and Beta-Spherical Importance Sampling in Critical Region
,”
Struct. Multidiscipl. Optim.
,
60
(
1
), pp.
35
58
.
21.
Li
,
W.
,
Gao
,
L.
, and
Xiao
,
M.
,
2020
, “
Multidisciplinary Robust Design Optimization Under Parameter and Model Uncertainties
,”
Eng. Optim.
,
52
(
3
), pp.
426
445
.
22.
Li
,
W.
,
Gao
,
L.
,
Garg
,
A.
, and
Xiao
,
M.
,
2020
, “
Multidisciplinary Robust Design Optimization Considering Parameter and Metamodeling Uncertainties
,”
Eng. Comput.
23.
Zhou
,
Q.
,
Jiang
,
P.
,
Huang
,
X.
,
Zhang
,
F.
, and
Zhou
,
T.
,
2018
, “
A Multi-Objective Robust Optimization Approach Based on Gaussian Process Model
,”
Struct. Multidiscipl. Optim.
,
57
(
1
), pp.
213
233
.
24.
Zhou
,
H.
,
Zhou
,
Q.
,
Liu
,
C.
, and
Zhou
,
T.
,
2018
, “
A Kriging Metamodel-Assisted Robust Optimization Method Based on a Reverse Model
,”
Eng. Optim.
,
50
(
2
), pp.
253
272
.
25.
Hu
,
N.
, and
Duan
,
B.
,
2018
, “
An Efficient Robust Optimization Method With Random and Interval Uncertainties
,”
Struct. Multidiscipl. Optim.
,
58
(
1
), pp.
229
243
.
26.
Zhang
,
Y.
,
Li
,
M.
,
Zhang
,
J.
, and
Li
,
G.
,
2016
, “
Robust Optimization With Parameter and Model Uncertainties Using Gaussian Processes
,”
J. Mech. Des.
,
138
(
11
), p.
111405
.
27.
Dellino
,
G.
,
Kleijnen
,
J. P. C.
, and
Meloni
,
C.
,
2015
,
Metamodel-Based Robust Simulation-Optimization: An Overview
,
Springer US
,
Boston, MA
, pp.
27
54
.
28.
ur Rehman
,
S.
,
Langelaar
,
M.
, and
van Keulen
,
F.
,
2014
, “
Efficient Kriging-Based Robust Optimization of Unconstrained Problems
,”
J. Comput. Sci.
,
5
(
6
), pp.
872
881
.
29.
Ur Rehman
,
S.
, and
Langelaar
,
M.
,
2016
, “
Efficient Infill Sampling for Unconstrained Robust Optimization Problems
,”
Eng. Optim.
,
48
(
8
), pp.
1313
1332
.
30.
ur Rehman
,
S.
, and
Langelaar
,
M.
,
2017
, “
Expected Improvement Based Infill Sampling for Global Robust Optimization of Constrained Problems
,”
Optim. Eng.
,
18
(
3
), pp.
723
753
.
31.
Marzat
,
J.
,
Walter
,
E.
, and
Piet-Lahanier
,
H.
,
2013
, “
Worst-Case Global Optimization of Black-Box Functions Through Kriging and Relaxation
,”
J. Global Optim.
,
55
(
4
), pp.
707
727
.
32.
Marzat
,
J.
,
Walter
,
E.
, and
Piet-Lahanier
,
H.
,
2016
, “
A New Expected-Improvement Algorithm for Continuous Minimax Optimization
,”
J. Global Optim.
,
64
(
4
), pp.
785
802
.
33.
Sanders
,
N. D.
,
Richard
,
E. M.
,
Fieldsend
,
J. E.
, and
Rahat
,
A. A. M.
,
2020
, “
A Bayesian Approach for the Robust Optimisation of Expensive-to-Evaluate Functions
,”
IEEE Trans. Evol. Comput.
34.
Havinga
,
J.
, and
Klaseboer
,
G.
,
2017
, “
Sequential Improvement for Robust Optimization Using an Uncertainty Measure for Radial Basis Functions
,”
Struct. Multidiscipl. Optim.
,
55
(
4
), pp.
1345
1363
.
35.
Nejadseyfi
,
O.
,
Geijselaers
,
H.
, and
Boogaard
,
T. v. d.
,
2019
, “
Robust Optimization Based on Analytical Evaluation of Uncertainty Propagation
,”
Eng. Optim.
,
51
(
9
), pp.
1581
1603
.
36.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
,
2004
, “
Analytical Uncertainty Propagation Via Metamodels in Simulation-Based Design Under Uncertainty
,”
Multidisciplinary Analysis Optimization Conferences
,
Albany, NY
,
Aug. 30–Sept. 1
.
37.
Keane
,
A. J.
,
2012
, “
Cokriging for Robust Design Optimization
,”
AIAA J.
,
50
(
11
), pp.
2351
2364
.
38.
Keane
,
A. J.
, and
Voutchkov
,
I. I.
,
2020
, “
Robust Design Optimization Using Surrogate Models
,”
J. Comput. Des. Eng.
,
7
(
1
), pp.
44
55
.
39.
Cheng
,
J.
,
Liu
,
Z.
,
Wu
,
Z.
,
Li
,
X.
, and
Tan
,
J.
,
2015
, “
Robust Optimization of Structural Dynamic Characteristics Based on Adaptive Kriging Model and CNSGA
,”
Struct. Multidiscipl. Optim.
,
51
(
2
), pp.
423
437
.
40.
Ribaud
,
M.
,
Blanchet-Scalliet
,
C.
,
Helbert
,
C.
, and
Gillot
,
F.
,
2020
, “
Robust Optimization: A Kriging-Based Multi-Objective Optimization Approach
,”
Reliab. Eng. Syst. Saf.
,
200
(
1
), p.
106913
.
41.
Beyer
,
H.-G.
, and
Sendhoff
,
B.
,
2007
, “
Robust Optimization—A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
33
), pp.
3190
3218
.
42.
Ryan
,
K. M.
,
Lewis
,
M. J.
, and
Yu
,
K. H.
,
2015
, “
Comparison of Robust Optimization Methods Applied to Hypersonic Vehicle Design
,”
J. Aircraft
,
52
(
5
), pp.
1510
1523
.
43.
Couckuyt
,
I.
,
Dhaene
,
T.
, and
Demeester
,
P.
,
2014
, “
ooDACE Toolbox: A Flexible Object-Oriented Kriging Implementation
,”
J. Mach. Learn. Res.
,
15
(
1
), pp.
3183
3186
.
44.
Ugray
,
Z.
,
Lasdon
,
L.
,
Plummer
,
J.
,
Glover
,
F.
,
Kelly
,
J.
, and
Martì
,
R.
,
2007
, “
Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization
,”
Informs J. Comput.
,
19
(
3
), pp.
328
340
.
45.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numerical Optimization
,
Springer
,
New York, USA
.
46.
Han
,
Z.-H.
,
Görtz
,
S.
, and
Zimmermann
,
R.
,
2013
, “
Improving Variable-Fidelity Surrogate Modeling Via Gradient-Enhanced Kriging and a Generalized Hybrid Bridge Function
,”
Aerosp. Sci. Technol.
,
25
(
1
), pp.
177
189
.
47.
Han
,
Z.-H.
,
Zhang
,
Y.
,
Song
,
C.-X.
, and
Zhang
,
K.-S.
,
2017
, “
Weighted Gradient-Enhanced Kriging for High-Dimensional Surrogate Modeling and Design Optimization
,”
AIAA J.
,
55
(
12
), pp.
4330
4346
.
48.
McHutchon
,
A.
,
2013
,
“Differentiating Gaussian Processes,”
http://mlg.eng.cam.ac.uk/mchutchon/DifferentiatingGPs.pdf.
49.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Sondergaaard
,
J.
,
2002
, “
Dace: A Matlab Kriging Toolbox
,”
Report IMM-TR-2002-12, Technical University of Denmark
.
50.
Wauters
,
J.
,
Couckuyt
,
I.
, and
Degroote
,
J.
,
2021
, “
ESLA: A New Surrogate-Assisted Single-Loop Reliability-Based Design Optimization Technique
,”
Struct. Multidiscipl. Optim.
,
63
(
2
), pp.
2653
2671
.
51.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
The MIT Press
,
Cambridge, MA
.
52.
Palar
,
P. S.
,
Zuhal
,
L. R.
,
Chugh
,
T.
, and
Rahat
,
A.
,
2020
, “
On the Impact of Covariance Functions in Multi-Objective Bayesian Optimization for Engineering Design
,”
AIAA SciTech Forum
,
Orlando, FL
,
Jan. 6–10
.
53.
Stein
,
M. L.
,
1991
, “
A Kernel Approximation to the Kriging Predictor of a Spatial Process
,”
Ann. Inst. Stat. Math.
,
43
(
1
), pp.
61
75
.
54.
Janusevskis
,
J.
,
Le Riche
,
R.
,
Ginsbourger
,
D.
, and
Girdziusas
,
R.
,
2012
, “Expected Improvements for the Asynchronous Parallel Global Optimization of Expensive Functions: Potentials and Challenges,”
Learning and Intelligent Optimization
,
Hamadi
,
Y.
, and
Schoenauer
,
M.
, eds.,
Springer
,
Berlin
, pp.
413
418
.
55.
Oberkampf
,
W. L.
,
Trucano
,
T. G.
, and
Hirsch
,
C.
,
2004
, “
Verification, Validation, and Predictive Capability in Computational Engineering and Physics
,”
Appl. Mech. Rev.
,
57
(
5
), pp.
345
384
.
56.
Girard
,
A.
,
2004
,
Approximate Methods for Propagation of Uncertainty With Gaussian Process Models
,
Glasgow University
,
Glasgow, UK
.
57.
Isserlis
,
L.
,
1916
, “
On Certain Probable Errors and Correlation Coefficients of Multiple Frequency Distributions With Skew Regression
,”
Biometrika
,
11
(
3
), pp.
185
190
.
58.
Abt
,
M.
,
1994
, “
A Note on the Product Correlation Rule
,”
Linear Algebra Appl.
,
199
(
1
), pp.
171
177
.
59.
Keane
,
A. J.
,
2006
, “
Statistical Improvement Criteria for Use in Multiobjective Design Optimization
,”
AIAA J.
,
44
(
4
), pp.
879
891
.
60.
Wagner
,
T.
,
Emmerich
,
M.
,
Deutz
,
A.
, and
Ponweiser
,
W.
,
2010
, “On Expected-Improvement Criteria for Model-Based Multi-Objective Optimization,”
Parallel Problem Solving From Nature, PPSN XI
,
Schaefer
,
R.
,
Cotta
,
C.
,
Kołodziej
,
J.
, and
Rudolph
,
G.
, eds.,
Springer
,
Berlin
, pp.
718
727
.
61.
Wauters
,
J.
,
Keane
,
A.
, and
Degroote
,
J.
,
2020
, “
Development of an Adaptive Infill Criterion for Constrained Multi-Objective Asynchronous Surrogate-Based Optimization
,”
J. Global Optim.
,
78
(
1
), pp.
137
160
.
62.
Deb
,
K.
,
Thiele
,
L.
,
Laumanns
,
M.
, and
Zitzler
,
E.
,
2005
,
Scalable Test Problems for Evolutionary Multiobjective Optimization
,
Springer
,
London
, pp.
105
145
.
63.
Fonseca
,
C. M.
, and
Fleming
,
P. J.
,
1996
, “On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers,”
Parallel Problem Solving From Nature—PPSN IV
,
Voigt
,
H.-M.
,
Ebeling
,
W.
,
Rechenberg
,
I.
, and
Schwefel
,
H.-P.
, eds.,
Springer
,
Berlin
, pp.
584
593
.
64.
Knowles
,
J.
, and
Corne
,
D.
,
1999
, “
The Pareto Archived Evolution Strategy: A New Baseline Algorithm for Pareto Multiobjective Optimisation
,”
Congress on Evolutionary Computation
,
Washington, DC
,
July 6–9
.
65.
Knowles
,
J.
,
2005
, “
Parego: A Hybrid Algorithm With On-Line Landscape Approximation for Expensive Multiobjective Optimization Problems
,”
IEEE Trans. Evol. Comput.
,
10
(
1
), pp.
50
66
.
66.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
67.
Morris
,
M. D.
, and
Mitchell
,
T. J.
,
1995
, “
Exploratory Designs for Computational Experiments
,”
J. Stat. Plan. Inference
,
43
(
3
), pp.
381
402
.
68.
Hicken
,
J. E.
,
2013
, “
Aerodynamic Design Optimization Workshop: Twist Optimization Case
,”
Report, AIAA ADODG
.
69.
Zingg
,
D. W.
, and
Streuber
,
G.
,
2017
, “
Aerodynamic Design Optimization Workshop: Multimodal Subsonic Inviscid Optimization Problem
,”
Report, AIAA ADODG
.
70.
Chernukhin
,
O.
, and
Zingg
,
D. W.
,
2013
, “
Multimodality and Global Optimization in Aerodynamic Design
,”
AIAA J.
,
51
(
6
), pp.
1342
1354
.
71.
Bons
,
N. P.
,
He
,
X.
,
Mader
,
C. A.
, and
Martins
,
J. R. R. A.
,
2019
, “
Multimodality in Aerodynamic Wing Design Optimization
,”
AIAA J.
,
57
(
3
), pp.
1004
1018
.
72.
LeDoux
,
S. T.
,
Vassberg
,
J. C.
,
Young
,
D. P.
,
Fugal
,
S.
,
Kamenetskiy
,
D.
,
Huffman
,
W. P.
,
Melvin
,
R. G.
, and
Smith
,
M. F.
,
2015
, “
Study Based on the AIAA Aerodynamic Design Optimization Discussion Group Test Cases
,”
AIAA J.
,
53
(
7
), pp.
1910
1935
.
73.
Drela
,
M.
,
1998
,
Frontiers of Computational Fluid Dynamics: Pros & Cons of Airfoil Optimization
,
World Scientific
,
USA
, pp.
363
381
.
74.
Drela
,
M.
, and
Youngren
,
H.
,
2017
,
AVL 3.27
, http://web.mit.edu/drela/Public/web/avl/.
75.
Drela
,
M.
,
1989
, “
XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils
,”
Low Reynolds Number Aerodynamics: Proceedings of the Conference Notre Dame
,
IN
,
Jun. 5–7
, pp.
1
12
.
76.
Morgado
,
J.
,
Vizinho
,
R.
,
Silvestre
,
M. A. R.
, and
Páscoa
,
J. C.
,
2016
, “
Xfoil Vs CFD Performance Predictions for High Lift Low Reynolds Number Airfoils
,”
Aerosp. Sci. Technol.
,
52
(
1
), pp.
207
214
.
77.
Wauters
,
J.
,
Couckuyt
,
I.
,
Knudde
,
N.
,
Dhaene
,
T.
, and
Degroote
,
J.
,
2019
, “
Multi-Objective Optimization of a Wing Fence on a UAV Using Surrogate-Derived Gradients
,”
Struct. Multidiscipl. Optim.
,
61
(
1
), pp.
353
364
.
78.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Volker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.
You do not currently have access to this content.