Abstract

It is generally understood that intractable computational intensity stemming from repeatedly calling performance function when evaluating the contribution of joint focal elements hinders the application of evidence theory in practical engineering. In order to promote the practicability of evidence theory for the reliability evaluation of engineering structures, an efficient reliability analysis method based on the active learning Kriging model is proposed in this study. To start with, a basic variable is selected according to basic probability assignment (BPA) of evidence variables to divide the evidence space into sub-evidence spaces. Intersection points between the performance function and the sub-evidence spaces are then determined by solving the univariate root-finding problem. Sample points are randomly identified to enhance the accuracy of the subsequently established surrogate model. Initial Kriging model with high approximation accuracy is subsequently established through these intersection points and additional sample points generated by Latin hypercube sampling. An active learning function is employed to sequentially refine the Kriging model with minimal sample points. As a result, belief (Bel) measure and plausibility (Pl) measure are derived efficiently via the surrogate model in the evidence-theory-based reliability analysis. The currently proposed analysis method is exemplified with three numerical examples to demonstrate the efficiency and is applied to reliability analysis of positioning accuracy for an industrial robot.

References

1.
Zhang
,
D.
,
Han
,
X.
,
Jiang
,
C.
,
Liu
,
J.
, and
Li
,
Q.
,
2017
, “
Time-Dependent Reliability Analysis Through Response Surface Method
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041404
.
2.
Xiao
,
N.
,
Zhan
,
H.
, and
Yuan
,
K.
,
2020
, “
A New Reliability Method for Small Failure Probability Problems by Combining the Adaptive Importance Sampling and Surrogate Models
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113336
.
3.
Zafar
,
T.
,
Zhang
,
Y.
, and
Wang
,
Z.
,
2020
, “
An Efficient Kriging Based Method for Time-Dependent Reliability Based Robust Design Optimization via Evolutionary Algorithm
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113386
.
4.
Yang
,
M.
,
Zhang
,
D.
,
Jiang
,
C.
,
Han
,
X.
, and
Li
,
Q.
,
2021
, “
A Hybrid Adaptive Kriging-Based Single Loop Approach for Complex Reliability-Based Design Optimization Problems
,”
Reliab. Eng. Syst. Saf.
,
215
, p.
107736
.
5.
Zhang
,
J.
,
Xiao
,
M.
,
Gao
,
L.
,
Qiu
,
H.
, and
Yang
,
Z.
,
2018
, “
An Improved Two-Stage Framework of Evidence-Based Design Optimization
,”
Struct. Multidiscipl. Optim.
,
58
(
4
), pp.
1673
1693
.
6.
Guo
,
J.
, and
Du
,
X.
,
2007
, “
Sensitivity Analysis With Mixture of Epistemic and Aleatory Uncertainties
,”
AIAA J.
,
45
(
9
), pp.
2337
2349
.
7.
Kiureghian
,
A. D.
, and
Ditlevsen
,
O.
,
2009
, “
Aleatory or Epistemic? Does It Matter?
,”
Struct. Saf.
,
31
(
2
), pp.
105
112
.
8.
Cho
,
H.
,
Choi
,
K. K.
, and
Shin
,
J.
,
2019
, “
Iterative Most Probable Point Search Method for Problems With a Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
,
142
(
7
), p.
071703
.
9.
Xiahou
,
T.
,
Liu
,
Y.
, and
Zhang
,
Q.
,
2020
, “
Multi-objective Redundancy Allocation for Multi-state System Design Under Epistemic Uncertainty of Component States
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111703
.
10.
Yang
,
M.
,
Zhang
,
D.
, and
Han
,
X.
,
2020
, “
New Efficient and Robust Method for Structural Reliability Analysis and its Application in Reliability-Based Design Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
366
, p.
113018
.
11.
Zhang
,
D.
,
Han
,
Z.
,
Wang
,
F.
, and
Han
,
X.
,
2021
, “
Proficiency of Statistical Moment-Based Methods for Analysis of Positional Accuracy Reliability of Industrial Robots
,”
Int. J. Mech. Mater. Des.
,
17
(
2
), pp.
403
418
.
12.
Zhang
,
D.
,
Zhou
,
P.
,
Jiang
,
C.
,
Yang
,
M.
,
Han
,
X.
, and
Li
,
Q.
,
2021
, “
A Stochastic Process Discretization Method Combing Active Learning Kriging Model for Efficient Time-Variant Reliability Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
384
, p.
113990
.
13.
Papadimitriou
,
D. I.
,
Mourelatos
,
Z. P.
, and
Hu
,
Z.
,
2018
, “
Reliability Analysis Using Second-Order Saddlepoint Approximation and Mixture Distributions
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021401
.
14.
Zhang
,
J.
,
Xiao
,
M.
, and
Gao
,
L.
,
2019
, “
A New Method for Reliability Analysis of Structures With Mixed Random and Convex Variables
,”
Appl. Math. Model.
,
70
, pp.
206
220
.
15.
Zhang
,
Z.
,
Jiang
,
C.
,
Ruan
,
X. X.
, and
Guan
,
F. J.
,
2018
, “
A Novel Evidence Theory Model Dealing With Correlated Variables and the Corresponding Structural Reliability Analysis Method
,”
Struct. Multidiscipl. Optim.
,
57
(
4
), pp.
1749
1764
.
16.
Wu
,
J.
,
Zhang
,
D.
,
Liu
,
J.
,
Jia
,
X.
, and
Han
,
X.
,
2020
, “
A Computational Framework of Kinematic Accuracy Reliability Analysis for Industrial Robots
,”
Appl. Math. Model.
,
82
, pp.
189
216
.
17.
Azizi
,
M.
,
Ejlali
,
R. G.
,
Mousavi Ghasemi
,
S. A.
, and
Talatahari
,
S.
,
2019
, “
Upgraded Whale Optimization Algorithm for Fuzzy Logic Based Vibration Control of Nonlinear Steel Structure
,”
Eng. Struct.
,
192
, pp.
53
70
.
18.
Meng
,
Z.
,
Pang
,
Y.
,
Pu
,
Y.
, and
Wang
,
X.
,
2020
, “
New Hybrid Reliability-Based Topology Optimization Method Combining Fuzzy and Probabilistic Models for Handling Epistemic and Aleatory Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
363
, p.
112886
.
19.
Wang
,
W.
,
Xue
,
H.
, and
Gao
,
H.
,
2021
, “
An Effective Evidence Theory-Based Reliability Analysis Algorithm for Structures With Epistemic Uncertainty
,”
Qual. Reliab. Eng. Int.
,
37
(
2
), pp.
841
855
.
20.
Hou
,
Y.
,
2021
, “
Sensitivity Analysis of Epistemic Uncertainty on Input Parameters and System Structure Using Dempster-Shafer Theory
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. B: Mech. Eng.
,
7
(
2
), p.
020908
.
21.
Rohmer
,
J.
,
2021
, “
Targeted Reduction of p-Boxes in Risk Assessments With Mixed Aleatory and Epistemic Uncertainties
,”
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
,
7
(
2
), p.
020901
.
22.
Dempster
,
A. P.
,
1977
, “
Maximum Likelihood From Incomplete Data via the EM Algorithm
,”
J. R. Stat. Soc. Ser. B Methodol.
,
39
(
1
), pp.
1
22
.
23.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
,
Princeton University Press
,
Princeton, NJ
.
24.
Helton
,
J. C.
, and
Johnson
,
J. D.
,
2011
, “
Quantification of Margins and Uncertainties: Alternative Representations of Epistemic Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
1034
1052
.
25.
Wang
,
C.
,
2019
, “
Evidence-Theory-Based Uncertain Parameter Identification Method for Mechanical Systems With Imprecise Information
,”
Comput. Methods Appl. Mech. Eng.
,
351
, pp.
281
296
.
26.
Xiao
,
M.
,
Gao
,
L.
,
Xiong
,
H.
, and
Luo
,
Z.
,
2015
, “
An Efficient Method for Reliability Analysis Under Epistemic Uncertainty Based on Evidence Theory and Support Vector Regression
,”
J. Eng. Des.
,
26
(
10–12
), pp.
340
364
.
27.
Bai
,
Y. C.
,
Han
,
X.
,
Jiang
,
C.
, and
Liu
,
J.
,
2012
, “
Comparative Study of Metamodeling Techniques for Reliability Analysis Using Evidence Theory
,”
Adv. Eng. Softw.
,
53
, pp.
61
71
.
28.
Cao
,
L.
,
Liu
,
J.
,
Han
,
X.
,
Jiang
,
C.
, and
Liu
,
Q.
,
2018
, “
An Efficient Evidence-Based Reliability Analysis Method via Piecewise Hyperplane Approximation of Limit State Function
,”
Struct. Multidiscipl. Optim.
,
58
(
1
), pp.
201
213
.
29.
Cao
,
L.
,
Liu
,
J.
,
Jiang
,
C.
,
Wu
,
Z.
, and
Zhang
,
Z.
,
2019
, “
Evidence-Based Structural Uncertainty Quantification by Dimension Reduction Decomposition and Marginal Interval Analysis
,”
ASME J. Mech. Des.
,
142
(
5
), p.
051701
.
30.
Jiang
,
C.
,
Zhang
,
W.
,
Wang
,
B.
, and
Han
,
X.
,
2014
, “
Structural Reliability Analysis Using a Copula-Function-Based Evidence Theory Model
,”
Comput. Struct.
,
143
, pp.
19
31
.
31.
Jiang
,
C.
,
Wang
,
B.
,
Li
,
Z. R.
,
Han
,
X.
, and
Yu
,
D. J.
,
2013
, “
An Evidence-Theory Model Considering Dependence Among Parameters and Its Application in Structural Reliability Analysis
,”
Eng. Struct.
,
57
, pp.
12
22
.
32.
Jiang
,
C.
,
Zhang
,
Z.
,
Han
,
X.
, and
Liu
,
J.
,
2013
, “
A Novel Evidence-Theory-Based Reliability Analysis Method for Structures With Epistemic Uncertainty
,”
Comput. Struct.
,
129
, pp.
1
12
.
33.
Liu
,
J.
,
Cao
,
L.
,
Jiang
,
C.
,
Ni
,
B.
, and
Zhang
,
D.
,
2020
, “
Parallelotope-Formed Evidence Theory Model for Quantifying Uncertainties With Correlation
,”
Appl. Math. Model.
,
77
, pp.
32
48
.
34.
Yang
,
X.
,
Liu
,
Y.
,
Zhang
,
Y.
, and
Yue
,
Z.
,
2015
, “
Hybrid Reliability Analysis With Both Random and Probability-Box Variables
,”
Acta Mech.
,
226
(
5
), pp.
1341
1357
.
35.
Zhang
,
D.
,
Peng
,
Z.
,
Ning
,
G.
, and
Han
,
X.
,
2020
, “
Positioning Accuracy Reliability of Industrial Robots Through Probability and Evidence Theories
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011704
.
36.
Feng
,
K.
,
Lu
,
Z.
,
Yun
,
W.
, and
He
,
L.
,
2019
, “
Bi-objective Adaptive Kriging for Reliability Analysis With Random and Evidence Variables
,”
AIAA J.
,
58
(
4
), pp.
1733
1747
.
37.
Cao
,
L.
,
Liu
,
J.
,
Wang
,
Q.
,
Jiang
,
C.
, and
Zhang
,
L.
,
2019
, “
An Efficient Structural Uncertainty Propagation Method Based on Evidence Domain Analysis
,”
Eng. Struct.
,
194
, pp.
26
35
.
38.
Zhang
,
Z.
,
Jiang
,
C.
,
Wang
,
G. G.
, and
Han
,
X.
,
2015
, “
First and Second Order Approximate Reliability Analysis Methods Using Evidence Theory
,”
Reliab. Eng. Syst. Saf.
,
137
, pp.
40
49
.
39.
Agarwal
,
H.
,
Renaud
,
J. E.
,
Preston
,
E. L.
, and
Padmanabhan
,
D.
,
2004
, “
Uncertainty Quantification Using Evidence Theory in Multidisciplinary Design Optimization
,”
Reliab. Eng. Syst. Saf.
,
85
(
1
), pp.
281
294
.
40.
Helton
,
J. C.
,
Johnson
,
J. D.
, and
Oberkampf
,
W. L.
,
2004
, “
An Exploration of Alternative Approaches to the Representation of Uncertainty in Model Predictions
,”
Reliab. Eng. Syst. Saf.
,
85
(
1
), pp.
39
71
.
41.
Soundappan
,
P.
,
Nikolaidis
,
E.
,
Haftka
,
R. T.
,
Grandhi
,
R.
, and
Canfield
,
R.
,
2004
, “
Comparison of Evidence Theory and Bayesian Theory for Uncertainty Modeling
,”
Reliab. Eng. Syst. Saf.
,
85
(
1
), pp.
295
311
.
42.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
,
2005
, “
A Design Optimization Method Using Evidence Theory
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
901
908
.
43.
Zhang
,
Z.
,
Ruan
,
X. X.
,
Duan
,
M. F.
, and
Jiang
,
C.
,
2018
, “
An Efficient Epistemic Uncertainty Analysis Method Using Evidence Theory
,”
Comput. Methods Appl. Mech. Eng.
,
339
, pp.
443
466
.
44.
Zhang
,
Z.
,
Jiang
,
C.
,
Han
,
X.
,
Hu
,
D.
, and
Yu
,
S.
,
2014
, “
A Response Surface Approach for Structural Reliability Analysis Using Evidence Theory
,”
Adv. Eng. Softw.
,
69
, pp.
37
45
.
45.
Christensen
,
E. T.
,
Lund
,
E.
, and
Lindgaard
,
E.
,
2017
, “
Experimental Validation of Surrogate Models for Predicting the Draping of Physical Interpolating Surfaces
,”
ASME J. Mech. Des.
,
140
(
1
), p.
011401
.
46.
Wu
,
H.
,
Zhu
,
Z.
, and
Du
,
X.
,
2020
, “
System Reliability Analysis With Autocorrelated Kriging Predictions
,”
ASME J. Mech. Des.
,
142
(
10
), p.
101702
.
47.
Hengl
,
T.
,
Heuvelink
,
G. B. M.
, and
Rossiter
,
D. G.
,
2007
, “
About Regression-Kriging: From Equations to Case Studies
,”
Comput. Geosci.
,
33
(
10
), pp.
1301
1315
.
48.
Zheng
,
P.
,
Ming
,
W. C.
,
Zong
,
Z.
, and
Wang
,
L.
,
2017
, “
A New Active Learning Method Based on the Learning Function U of the AK-MCS Reliability Analysis Method
,”
Eng. Struct.
,
148
, pp.
185
194
.
49.
Tao
,
T.
,
Zhao
,
G.
, and
Ren
,
S.
,
2019
, “
An Efficient Kriging-Based Constrained Optimization Algorithm by Global and Local Sampling in Feasible Region
,”
ASME J. Mech. Des.
,
142
(
5
), p.
051401
.
50.
Qiu
,
Z. P.
, and
Jiang
,
N.
,
2021
, “
An Ellipsoidal Newton's Iteration Method of Nonlinear Structural Systems With Uncertain-But-Bounded Parameters
,”
Comput. Methods Appl. Mech. Eng.
,
373
, p.
113501
.
51.
Xie
,
C.
,
Li
,
G.
, and
Wei
,
F.
,
2018
, “
An Integrated QMU Approach to Structural Reliability Assessment Based on Evidence Theory and Kriging Model With Adaptive Sampling
,”
Reliab. Eng. Syst. Saf.
,
171
, pp.
112
122
.
52.
Meng
,
Z.
,
Zhang
,
Z.
,
Li
,
G.
, and
Zhang
,
D.
,
2020
, “
An Active Weight Learning Method for Efficient Reliability Assessment With Small Failure Probability
,”
Struct. Multidiscipl. Optim.
,
61
(
3
), pp.
1157
1170
.
53.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
54.
Huang
,
X.
,
Chen
,
J.
, and
Zhu
,
H.
,
2016
, “
Assessing Small Failure Probabilities by AK–SS: An Active Learning Method Combining Kriging and Subset Simulation
,”
Struct. Saf.
,
59
, pp.
86
95
.
55.
Yang
,
X.
,
Liu
,
Y.
, and
Ma
,
P.
,
2017
, “
Structural Reliability Analysis Under Evidence Theory Using the Active Learning Kriging Model
,”
Eng. Optim.
,
49
(
11
), pp.
1922
1938
.
56.
Dong
,
W.
, and
Shah
,
H. C.
,
1987
, “
Vertex Method for Computing Functions of Fuzzy Variables
,”
Fuzzy Sets Syst.
,
24
(
1
), pp.
65
78
.
57.
Zhang
,
D.
, and
Han
,
X.
,
2020
, “
Kinematic Reliability Analysis of Robotic Manipulator
,”
ASME J. Mech. Des.
,
142
(
4
), p.
044502
.
58.
Zhang
,
D.
,
Zhang
,
N.
,
Ye
,
N.
,
Fang
,
J.
, and
Han
,
X.
,
2020
, “
Hybrid Learning Algorithm of Radial Basis Function Networks for Reliability Analysis
,”
IEEE Trans. Reliab.
,
70
(
3
), pp.
1
14
.
59.
Wu
,
J.
,
Zhang
,
D.
,
Jiang
,
C.
,
Han
,
X.
, and
Li
,
Q.
,
2021
, “
On Reliability Analysis Method Through Rotational Sparse Grid Nodes
,”
Mech. Syst. Signal Process
,
147
, pp.
107
106
.
60.
Wu
,
J.
,
Zhang
,
D.
,
Liu
,
J.
, and
Han
,
X.
,
2020
, “
A Moment Approach to Positioning Accuracy Reliability Analysis for Industrial Robots
,”
IEEE Trans. Reliab.
,
69
(
2
), pp.
699
714
.
61.
Yang
,
M.
,
Zhang
,
D.
,
Cheng
,
C.
, and
Han
,
X.
,
2021
, “
Reliability-Based Design Optimization for RV Reducer With Experimental Constraint
,”
Struct. Multidiscipl. Optim.
,
63
(
4
), pp.
2047
2064
.
62.
Rocha
,
C. R.
,
Tonetto
,
C. P.
, and
Dias
,
A.
,
2011
, “
A Comparison Between the Denavit–Hartenberg and the Screw-Based Methods Used in Kinematic Modeling of Robot Manipulators
,”
Robot. Comput.-Integr. Manuf.
,
27
(
4
), pp.
723
728
.
You do not currently have access to this content.