Abstract

Human beings are physically and cognitively variable, leading to a wide array of potential system use cases. To design safe and effective systems for highly heterogeneous populations, engineers must cater to this variability to minimize the chance of error and system failure. This can be a challenge because of the increasing costs associated with providing additional product variety. Most guidance for navigating these trade-offs is intended for late-stage design, when significant resources have been expended, thus risking expensive redesign or exclusion of users when new human concerns become apparent. Despite the critical need to evaluate accommodation-cost trade-offs in early stages of design, there is currently a lack of structured guidance. In this work, an approach to function modeling is proposed that allows the simultaneous consideration of human and machine functionality. This modeling approach facilitates the allocation of system functions to humans and machines to be used as an accessible baseline for concept development. Further, a multi-objective optimization model was developed to allocate functions with metrics for accommodation and cost. The model was demonstrated in a design case study. About 16 senior mechanical engineering students were recruited and tasked with performing the allocation task manually. The results were compared to the output of the optimization model. Results indicated that participants were unable to produce concepts with the same accommodation-cost efficiency as the optimization model. Further, the optimization model successfully produced a wide range of potential product concepts, demonstrating its utility as a decision-aid.

References

1.
Senefeld
,
J.
,
Yoon
,
T.
, and
Hunter
,
S. K.
,
2017
, “
Age Differences in Dynamic Fatigability and Variability of Arm and Leg Muscles: Associations With Physical Function
,”
Exp. Gerontol.
,
87
, pp.
74
83
.
2.
Scheuringer
,
M.
,
Stucki
,
G.
,
Huber
,
E. O.
,
Brach
,
M.
,
Schwarzkopf
,
S. R.
,
Kostanjsek
,
N.
, and
Stoll
,
T.
,
2005
, “
ICF Core Set for Patients With Musculoskeletal Conditions in Early Post-Acute Rehabilitation Facilities
,”
Disabil. Rehabil.
,
27
(
7–8
), pp.
405
410
.
3.
Meng
,
A.
,
Nexø
,
M. A.
, and
Borg
,
V.
,
2017
, “
The Impact of Retirement on Age Related Cognitive Decline—A Systematic Review
,”
BMC Geriatr.
,
17
(
1
), p.
160
.
4.
Guilera
,
G.
,
Pino
,
O.
,
Barrios
,
M.
,
Rojo
,
E.
,
Vieta
,
E.
, and
Gómez-Benito
,
J.
,
2020
, “
Towards an ICF Core Set for Functioning Assessment in Severe Mental Disorders: Commonalities in Bipolar Disorder, Depression and Schizophrenia
,”
Psicothema
,
32
(
1
), pp.
7
14
.
5.
Godde
,
B.
,
Bruns
,
P.
,
Wendel
,
V.
, and
Trautmann
,
M.
,
2018
, “
Effects of Age and Individual Experiences on Tactile Perception Over the Life Span in Women
,”
Acta Psychol.
,
190
, pp.
135
141
.
6.
Reddy
,
K.
,
Byrne
,
D.
,
Breen
,
D.
,
Lydon
,
S.
, and
O’Connor
,
P.
,
2020
, “
The Application of Human Reliability Analysis to Three Critical Care Procedures
,”
Reliab. Eng. Syst. Saf.
,
203
, p.
107116
.
7.
Knisely
,
B. M.
,
Levine
,
C.
,
Kharod
,
K. C.
, and
Vaughn-Cooke
,
M.
,
2020
, “
An Analysis of FDA Adverse Event Reporting Data for Trends in Medical Device Use Error
,”
Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care
, Online,
May 18–21
, pp.
130
134
.
8.
McHugh
,
K.
, and
Klockner
,
K.
,
2020
, “
Learning Lessons From Rail Safety Storytelling: Telling Safety Like It Is
,”
Saf. Sci.
,
122
, p.
104524
.
9.
Miranda
,
A. T.
,
2017
, “
Using Conditional Probabilities to Understand ‘Human Error’ in Military Aviation Mishaps
,”
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
,
Austin, TX
, Vol.
61
(
1
), pp.
1619
1620
.
10.
Tillman
,
B.
,
Tillman
,
P.
,
Rose
,
R. R.
, and
Woodson
,
W. E.
,
2016
,
Human Factors and Ergonomics Design Handbook
,
McGraw-Hill Education
,
New York
.
11.
Irshad
,
L.
,
Ahmed
,
S.
,
Demirel
,
O.
, and
Tumer
,
I. Y.
,
2019
, “
Coupling Digital Human Modeling With Early Design Stage Human Error Analysis to Assess Ergonomic Vulnerabilities
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
.
12.
Irshad
,
L.
,
Ahmed
,
S.
,
Demirel
,
O.
, and
Tumer
,
I. Y.
,
2018
, “
Identification of Human Errors During Early Design Stage Functional Failure Analysis
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec
,
Aug. 26–29
.
13.
Village
,
J.
,
Searcy
,
C.
,
Salustri
,
F.
, and
Patrick Neumann
,
W.
,
2015
, “
Design for Human Factors (DfHF): A Grounded Theory for Integrating Human Factors Into Production Design Processes
,”
Ergonomics
,
58
(
9
), pp.
1529
1546
.
14.
Ahmed
,
S.
, and
Demirel
,
H. O.
,
2020
, “
A Pre-prototyping Framework to Explore Human-Centered Prototyping Strategies During Early Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Online,
Aug. 17–19
.
15.
Sun
,
X.
,
Houssin
,
R.
,
Renaud
,
J.
, and
Gardoni
,
M.
,
2019
, “
A Review of Methodologies for Integrating Human Factors and Ergonomics in Engineering Design
,”
Int. J. Prod. Res.
,
57
(
15–16
), pp.
4961
4976
.
16.
Kett
,
S. G.
, and
Wartzack
,
S.
,
2015
, “
Integration of Universal Design Principles Into Early Phases of Product Design—A Case Study
,”
DS 80-9 Proceedings of the 20th International Conference on Engineering Design (ICED 15) Vol 9: User-Centred Design, Design of Socio-technical Systems
,
Milan, Italy
,
July 27–30
, pp.
289
300
.
17.
Ahmed
,
S.
,
Gawand
,
M. S.
,
Irshad
,
L.
, and
Demirel
,
H. O.
,
2018
, “
Exploring the Design Space Using a Surrogate Model Approach With Digital Human Modeling Simulations
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
.
18.
Knisely
,
B. M.
, and
Vaughn-Cooke
,
M.
,
2020
, “
Virtual Modeling of User Populations and Formative Design Parameters
,”
Systems
,
8
(
4
), p.
35
.
19.
de Winter
,
J. C. F.
, and
Dodou
,
D.
,
2014
, “
Why the Fitts List Has Persisted Throughout the History of Function Allocation
,”
Cognit. Technol. Work
,
16
(
1
), pp.
1
11
.
20.
Kaber
,
D. B.
,
2018
, “
Issues in Human–Automation Interaction Modeling: Presumptive Aspects of Frameworks of Types and Levels of Automation
,”
J. Cognit. Eng. Decis. Making
,
12
(
1
), pp.
7
24
.
21.
Patel
,
A.
,
Kramer
,
W. S.
,
Flynn
,
M.
,
Summers
,
J. D.
, and
Shuffler
,
M. L.
,
2020
, “
Function Modeling: A Modeling Behavior Analysis of Pause Patterns
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111402
.
22.
Tomiyama
,
T.
,
van Beek
,
T. J.
,
Cabrera
,
A. A. A.
,
Komoto
,
H.
, and
D'Amelio
,
V.
,
2013
, “
Making Function Modeling Practically Usable
,”
Ai Edam
,
27
(
3
), pp.
301
309
.
23.
Mokhtarian
,
H.
,
Coatanéa
,
E.
, and
Paris
,
H.
,
2017
, “
Function Modeling Combined With Physics-Based Reasoning for Assessing Design Options and Supporting Innovative Ideation
,”
Ai Edam
,
31
(
4
), pp.
476
500
.
24.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K.-H.
,
2007
,
Engineering Design: A Systematic Approach
,
Springer-Verlag
,
London
.
25.
Yildirim
,
U.
,
Campean
,
F.
, and
Williams
,
H.
,
2017
, “
Function Modeling Using the System State Flow Diagram
,”
Ai Edam
,
31
(
4
), pp.
413
435
.
26.
Umeda
,
Y.
,
Ishii
,
M.
,
Yoshioka
,
M.
,
Shimomura
,
Y.
, and
Tomiyama
,
T.
,
1996
, “
Supporting Conceptual Design Based on the Function-Behavior-State Modeler
,”
Ai Edam
,
10
(
4
), pp.
275
288
.
27.
Goel
,
A. K.
,
Rugaber
,
S.
, and
Vattam
,
S.
,
2009
, “
Structure, Behavior, and Function of Complex Systems: The Structure, Behavior, and Function Modeling Language
,”
Ai Edam
,
23
(
1
), pp.
23
35
.
28.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
29.
Feigh
,
K. M.
, and
Pritchett
,
A. R.
,
2014
, “
Requirements for Effective Function Allocation: A Critical Review
,”
J. Cognit. Eng. Decis. Making
,
8
(
1
), pp.
23
32
.
30.
Fits
,
P. M.
,
1951
,
Human Engineering for an Effective Air-Navigation and Traffic-Control System
,
National Research Council
,
Oxford, England
.
31.
Endsley
,
M.
, and
Kaber
,
D. B.
,
1999
, “
Level of Automation Effects on Performance, Situation Awareness and Workload in a Dynamic Control Task
,”
Ergonomics
,
42
(
3
), pp.
462
492
.
32.
Proud
,
R. W.
,
Hart
,
J. J.
, and
Mrozinski
,
R. B.
,
2003
,
Methods for Determining the Level of Autonomy to Design Into a Human Spaceflight Vehicle: A Function Specific Approach
,
National Aeronautics and Space Administration, Johnson Space Center
,
Houston, TX
.
33.
Flemisch
,
F.
,
Heesen
,
M.
,
Hesse
,
T.
,
Kelsch
,
J.
,
Schieben
,
A.
, and
Beller
,
J.
,
2012
, “
Towards a Dynamic Balance Between Humans and Automation: Authority, Ability, Responsibility and Control in Shared and Cooperative Control Situations
,”
Cognit. Technol. Work
,
14
(
1
), pp.
3
18
.
34.
Soria Zurita
,
N. F.
,
Stone
,
R. B.
,
Onan Demirel
,
H.
, and
Tumer
,
I. Y.
,
2020
, “
Identification of Human–System Interaction Errors During Early Design Stages Using a Functional Basis Framework
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
6
(
1
).
35.
Sangelkar
,
S.
, and
McAdams
,
D. A.
,
2011
,
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
,
Aug. 15–18
, pp.
539
556
.
36.
Ciavola
,
B. T.
,
Wu
,
C.
, and
Gershenson
,
J. K.
,
2015
, “
Integrating Function- and Affordance-Based Design Representations
,”
ASME J. Mech. Des
,
137
(
5
), p.
051101
.
37.
Simpson
,
T. W.
,
Maier
,
J. R.
, and
Mistree
,
F.
,
2001
, “
Product Platform Design: Method and Application
,”
Res. Eng. Des.
,
13
(
1
), pp.
2
22
.
38.
Jiao
,
J. (Roger)
,
Simpson
,
T. W.
, and
Siddique
,
Z.
,
2007
, “
Product Family Design and Platform-Based Product Development: A State-of-the-Art Review
,”
J. Intell. Manuf.
,
18
(
1
), pp.
5
29
.
39.
Gauss
,
L.
,
Lacerda
,
D. P.
, and
Cauchick Miguel
,
P. A.
,
2021
, “
Module-Based Product Family Design: Systematic Literature Review and Meta-Synthesis
,”
J. Intell. Manuf.
,
32
(
1
), pp.
265
312
.
40.
Fiorineschi
,
L.
,
Rissone
,
P.
, and
Rotini
,
F.
,
2014
, “
Modularization vs. Innovation
,”
Innovation Sci.
,
6
(
1
), pp.
29
42
.
41.
Pirmoradi
,
Z.
,
Wang
,
G.
, and
Simpson
,
T.
,
2014
,
A Review of Recent Literature in Product Family Design and Platform-Based Product Development
,”
Product Platform and Product Family Design: Methods and Applications
, pp.
1
46
.
42.
Michalek
,
J. J.
,
Ceryan
,
O.
,
Papalambros
,
P. Y.
, and
Koren
,
Y.
,
2005
, “
Balancing Marketing and Manufacturing Objectives in Product Line Design
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1196
1204
.
43.
Wäppling
,
D.
,
Feng
,
X.
,
Andersson
,
H.
,
Pettersson
,
M.
,
Lunden
,
B.
, and
Weström
,
J.
,
2011
, “
Simultaneous Requirement and Design Optimization of an Industrial Robot Family Using Multi-objective Optimization
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
,
Aug. 28–31
, pp.
815
823
.
44.
Akai
,
R.
,
Amaya
,
H.
, and
Fujita
,
K.
,
2010
, “
Product Family Deployment Through Optimal Resource Allocation Under Market System
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Aug. 15–18
, pp.
277
290
.
45.
Fujita
,
K.
,
Amaya
,
H.
, and
Akai
,
R.
,
2013
, “
Mathematical Model for Simultaneous Design of Module Commonalization and Supply Chain Configuration Toward Global Product Family
,”
J. Intell. Manuf.
,
24
(
5
), pp.
991
1004
.
46.
Ma
,
J.
, and
Kim
,
H. M.
,
2016
, “
Product Family Architecture Design With Predictive, Data-Driven Product Family Design Method
,”
Res. Eng. Des.
,
27
(
1
), pp.
5
21
.
47.
Pirmoradi
,
Z.
,
Haji Hajikolaei
,
K.
, and
Wang
,
G. G.
,
2015
, “
Designing Scalable Product Families by the Radial Basis Function–High-Dimensional Model Representation Metamodelling Technique
,”
Eng. Optim.
,
47
(
10
), pp.
1423
1439
.
48.
Unal
,
M.
,
Warn
,
G. P.
, and
Simpson
,
T. W.
,
2017
, “
Quantifying the Shape of Pareto Fronts During Multi-objective Trade Space Exploration
,”
ASME J. Mech. Des.
,
140
(
2
), p.
021402
.
49.
Simpson
,
T. W.
,
Bobuk
,
A.
,
Slingerland
,
L. A.
,
Brennan
,
S.
,
Logan
,
D.
, and
Reichard
,
K.
,
2012
, “
From User Requirements to Commonality Specifications: An Integrated Approach to Product Family Design
,”
Res. Eng. Des.
,
23
(
2
), pp.
141
153
.
50.
Sinha
,
K.
, and
Suh
,
E. S.
,
2018
, “
Pareto-optimization of Complex System Architecture for Structural Complexity and Modularity
,”
Res. Eng. Des.
,
29
(
1
), pp.
123
141
.
51.
Kim
,
S.
, and
Moon
,
S. K.
,
2017
, “
Sustainable Product Family Configuration Based on a Platform Strategy
,”
J. Eng. Des.
,
28
(
10–12
), pp.
731
764
.
52.
Wang
,
Q.
,
Tang
,
D.
,
Li
,
S.
,
Yang
,
J.
,
Salido
,
M. A.
,
Giret
,
A.
, and
Zhu
,
H.
,
2019
, “
An Optimization Approach for the Coordinated Low-Carbon Design of Product Family and Remanufactured Products
,”
Sustainability
,
11
(
2
), p.
460
.
53.
Xu
,
Y.
, and
Huijun
,
Z.
,
2007
, “
Function Principles for a Mechatronic System Design
,”
Proc. Inst. Mech. Eng. B
,
221
(
6
), pp.
1065
1076
.
54.
Nagel
,
R. L.
,
Bohm
,
M. R.
,
Linsey
,
J. S.
, and
Riggs
,
M. K.
,
2015
, “
Improving Students’ Functional Modeling Skills: A Modeling Approach and a Scoring Rubric
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051102
.
55.
Dekker
,
S. W. A.
, and
Woods
,
D. D.
,
2002
, “
MABA-MABA or Abracadabra? Progress on Human–Automation Co-ordination
,”
Cognit. Technol. Work
,
4
(
4
), pp.
240
244
.
56.
Bloom
,
B. S.
,
1956
,
Taxonomy of Educational Objectives: The Classification of Educational Goals
,
David McKay Company, Inc.
,
London, WI
.
57.
Harrow
,
A. J.
,
1972
,
A Taxonomy of the Psychomotor Domain: A Guide for Developing Behavioral Objectives
,
David McKay Company, Inc.
,
New York, NY
.
58.
Knisely
,
B. M.
,
Joyner
,
J. S.
, and
Vaughn-Cooke
,
M.
,
2021
, “
Cognitive Task Analysis and Workload Classification
,”
MethodsX
,
8
, p.
101235
.
59.
Manera
,
K.
,
Hanson
,
C. S.
,
Gutman
,
T.
, and
Tong
,
A.
,
2019
, “Consensus Methods: Nominal Group Technique,”
Handbook of Research Methods in Health Social Sciences
,
P
Liamputtong
, ed.,
Springer
,
Singapore
, pp.
737
750
.
60.
Gill
,
A. S.
,
Summers
,
J. D.
, and
Turner
,
C. J.
,
2017
, “
Comparing Function Structures and Pruned Function Structures for Market Price Prediction: An Approach to Benchmarking Representation Inferencing Value
,”
Ai Edam
,
31
(
4
), pp.
550
566
.
61.
Alizadeh
,
M.
,
Esfahani
,
M. N.
,
Tian
,
W.
, and
Ma
,
J.
,
2019
, “
Data-Driven Energy Efficiency and Part Geometric Accuracy Modeling and Optimization of Green Fused Filament Fabrication Processes
,”
ASME J. Mech. Des.
,
142
(
4
), p.
041701
.
62.
Wu
,
J.
, and
Azarm
,
S.
,
2000
, “
Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
18
25
.
63.
Li
,
M.
,
Chen
,
T.
, and
Yao
,
X.
,
2020
, “
How to Evaluate Solutions in Pareto-Based Search-Based Software Engineering? A Critical Review and Methodological Guidance
,” arXiv:2002.09040 [cs].
64.
Harding
,
J. L.
,
Pavkov
,
M. E.
,
Magliano
,
D. J.
,
Shaw
,
J. E.
, and
Gregg
,
E. W.
,
2019
, “
Global Trends in Diabetes Complications: A Review of Current Evidence
,”
Diabetologia
,
62
(
1
), pp.
3
16
.
65.
Alessa
,
T.
,
Hawley
,
M. S.
,
Hock
,
E. S.
, and
de Witte
,
L.
,
2019
, “
Smartphone Apps to Support Self-management of Hypertension: Review and Content Analysis
,”
JMIR mHealth uHealth
,
7
(
5
), p.
e13645
.
66.
Greenwood
,
D. A.
,
Gee
,
P. M.
,
Fatkin
,
K. J.
, and
Peeples
,
M.
,
2017
, “
A Systematic Review of Reviews Evaluating Technology-Enabled Diabetes Self-management Education and Support
,”
J. Diabetes Sci. Technol.
,
11
(
5
), pp.
1015
1027
.
67.
Pérez-Jover
,
V.
,
Sala-González
,
M.
,
Guilabert
,
M.
, and
Mira
,
J. J.
,
2019
, “
Mobile Apps for Increasing Treatment Adherence: Systematic Review
,”
J. Med. Internet Res.
,
21
(
6
), p.
e12505
.
68.
Kannry
,
J.
,
Beuria
,
P.
,
Wang
,
E.
, and
Nissim
,
J.
,
2012
, “
Personal Health Records: Meaningful Use, But for Whom?
,”
Mt. Sinai J. Med.
,
79
(
5
), pp.
593
602
.
69.
Sua
,
Y. S.
,
Jiang
,
Y.
,
Thompson
,
D. R.
, and
Wang
,
W.
,
2020
, “
Effectiveness of Mobile Phone-Based Self-management Interventions for Medication Adherence and Change in Blood Pressure in Patients With Coronary Heart Disease: A Systematic Review and Meta-analysis
,”
Eur. J. Cardiovasc. Nurs.
,
19
(
3
), pp.
192
200
.
70.
Showell
,
C.
,
2017
, “
Barriers to the Use of Personal Health Records by Patients: A Structured Review
,”
PeerJ
,
5
, p.
e3268
.
71.
Weppner
,
W. G.
,
Ralston
,
J. D.
,
Koepsell
,
T. D.
,
Grothaus
,
L. C.
,
Reid
,
R. J.
,
Jordan
,
L.
, and
Larson
,
E. B.
,
2010
, “
Use of a Shared Medical Record With Secure Messaging by Older Patients With Diabetes
,”
Diabetes Care
,
33
(
11
), pp.
2314
2319
.
72.
Colson
,
A. R.
, and
Cooke
,
R. M.
,
2018
, “
Expert Elicitation: Using the Classical Model to Validate Experts’ Judgments
,”
Rev. Environ. Econ. Policy
,
12
(
1
), pp.
113
132
.
73.
National Center for Health Statistics
,
2019
,
National Health and Nutrition Examination Survey Questionnaire
,
U.S. Department of Health and Human Services, Centers for Disease Control and Prevention
,
Hyattsville, MD
.
74.
McParland
,
D.
, and
Gormley
,
I. C.
,
2015
, “
Model Based Clustering for Mixed Data: ClustMD
,” arXiv:1511.01720 [stat].
75.
Dias
,
L. C.
,
Morton
,
A.
, and
Quigley
,
J.
,
2018
,
Elicitation: The Science and Art of Structuring Judgement
,
Springer International Publishing
,
Cham, Switzerland
.
76.
2020
,
MATLAB Ver. R2020b
,
The MathWorks Inc.
,
Natick, MA
.
77.
Deb
,
K.
,
2009
,
Multi-objective Optimization Using Evolutionary Algorithms
,
Wiley
,
Chichester
, UK.
78.
Garneau
,
C. J.
,
Nadadur
,
G.
, and
Parkinson
,
M. B.
,
2014
, “Considering Human Variability When Implementing Product Platforms,”
Advances in Product Family and Product Platform Design
,
T. W.
Simpson
,
J
.
(Roger) Jiao
,
Z.
Siddique
, and
K
.
Hölttä-Otto
, eds.,
Springer
,
New York
, pp.
559
585
.
79.
Brolin
,
E.
,
Högberg
,
D.
,
Hanson
,
L.
, and
Örtengren
,
R.
,
2017
, “
Adaptive Regression Model for Synthesizing Anthropometric Population Data
,”
Int. J. Ind. Ergon.
,
59
(Supplement C), pp.
46
53
.
You do not currently have access to this content.