Abstract

The critical problem of reliability design is how to obtain a more accurate failure probability with a smaller number of evaluations of actual complex and nonlinear performance function. To achieve this objective, an adaptive subset simulation method with a deep neural network (DNN) is proposed for accurate estimation of small failure probability. A determinate criterion for threshold values is developed, and the subset number is adaptively quantified according to the initial estimated value of small failure probability. Therefore, the estimation of small failure probability is converted to estimation problem of multiple large conditional probabilities. An adaptive deep neural network model is constructed in every subset to predict the conditional probability with a smaller number of evaluations of the actual performance function. Furthermore, the sampling points for the next subset can be adaptively selected according to the constructed DNN model, which can decrease the number of invalid sampling points and evaluations of actual performance function, then the computational efficiency for estimating the conditional probability in every subset is increased. The sampling points with high probability density functions are recalculated with actual performance function values to replace the predicted values of the DNN model, which can verify the accuracy of DNN model and increase the estimation accuracy of small failure probability. By analyzing a nonlinear problem, a multiple failure domain problem and two engineering examples, the effectiveness and accuracy of the proposed methodology for estimating small failure probability are verified.

References

1.
Zhou
,
T.
,
Peng
,
Y.
, and
Li
,
J.
,
2019
, “
An Efficient Reliability Method Combining Adaptive Global Metamodel and Probability Density Evolution Method
,”
Mech. Syst. Signal Process
,
131
, pp.
592
616
.
2.
Pan
,
Q.
, and
Dias
,
D.
,
2017
, “
An Efficient Reliability Method Combining Adaptive Support Vector Machine and Monte Carlo Simulation
,”
Struct. Saf.
,
67
, pp.
85
95
.
3.
McFarland
,
J.
, and
DeCarlo
,
E.
,
2020
, “
A Monte Carlo Framework for Probabilistic Analysis and Variance Decomposition With Distribution Parameter Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
197
, p.
106807
.
4.
Hurtado
,
J. E.
, and
Alvarez
,
D. A.
,
2013
, “
A Method for Enhancing Computational Efficiency in Monte Carlo Calculation of Failure Probabilities by Exploiting FORM Results
,”
Comput. Struct.
,
117
, pp.
95
104
.
5.
Lelièvre
,
N.
,
Beaurepaire
,
P.
,
Mattrand
,
C.
, and
Gayton
,
N.
,
2018
, “
AK-MCSi: A Kriging-Based Method to Deal With Small Failure Probabilities and Time-Consuming Models
,”
Struct. Saf.
,
73
, pp.
1
11
.
6.
Xiao
,
M.
,
Zhang
,
J.
,
Gao
,
L.
,
Lee
,
S.
, and
Eshghi
,
A. T.
,
2019
, “
An Efficient Kriging-Based Subset Simulation Method for Hybrid Reliability Analysis Under Random and Interval Variables With Small Failure Probability
,”
Struct. Multidiscipl. Optim.
,
59
(
6
), pp.
2077
2092
.
7.
Balesdent
,
M.
,
Morio
,
J.
, and
Marzat
,
J.
,
2013
, “
Kriging-Based Adaptive Importance Sampling Algorithms for Rare Event Estimation
,”
Struct. Saf.
,
44
, pp.
1
10
.
8.
Pedroso
,
D. M.
,
2017
, “
FORM Reliability Analysis Using a Parallel Evolutionary Algorithm
,”
Struct. Saf.
,
65
, pp.
84
99
.
9.
Strömberg
,
N.
,
2017
, “
Reliability-Based Design Optimization Using SORM and SQP
,”
Struct. Multidiscipl. Optim.
,
56
(
3
), pp.
631
645
.
10.
Zhang
,
L.-W.
,
2020
, “
An Improved Fourth-Order Moment Reliability Method for Strongly Skewed Distributions
,”
Struct. Multidiscipl. Optim.
,
62
(
3
), pp.
1213
1225
.
11.
Zhao
,
Y.-G.
,
Zhang
,
X.-Y.
, and
Lu
,
Z.-H.
,
2018
, “
Complete Monotonic Expression of the Fourth-Moment Normal Transformation for Structural Reliability
,”
Comput. Struct.
,
196
, pp.
186
199
.
12.
Teixeira
,
R.
,
Nogal
,
M.
, and
O’Connor
,
A.
,
2021
, “
Adaptive Approaches in Metamodel-Based Reliability Analysis: A Review
,”
Struct. Saf.
,
89
, p.
102019
.
13.
Zhang
,
D. Q.
,
Han
,
X.
,
Jiang
,
C.
, and
Liu
,
J.
,
2017
, “
Time-Dependent Reliability Analysis Through Response Surface Method
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041404
.
14.
Viana
,
F. A. C.
,
Gogu
,
C.
, and
Goel
,
T.
,
2021
, “
Surrogate Modeling: Tricks That Endured the Test of Time and Some Recent Developments
,”
Struct. Multidiscipl. Optim.
,
64
(
5
), pp.
2881
2908
.
15.
Yi
,
J.
,
Wu
,
F.
,
Zhou
,
Q.
,
Cheng
,
Y.
,
Ling
,
H.
, and
Liu
,
J.
,
2020
, “
An Active-Learning Method Based on Multi-Fidelity Kriging Model for Structural Reliability Analysis
,”
Struct. Multidiscipl. Optim.
,
63
(
1
), pp.
173
195
.
16.
Xiang
,
Z.
,
Chen
,
J.
,
Bao
,
Y.
, and
Li
,
H.
,
2020
, “
An Active Learning Method Combining Deep Neural Network and Weighted Sampling for Structural Reliability Analysis
,”
Mech. Syst. Signal Process
,
140
, p.
106684
.
17.
Yao
,
W.
,
Tang
,
G.
,
Wang
,
N.
, and
Chen
,
X.
,
2019
, “
An Improved Reliability Analysis Approach Based on Combined FORM and Beta-Spherical Importance Sampling in Critical Region
,”
Struct. Multidiscipl. Optim.
,
60
(
1
), pp.
35
58
.
18.
Zhang
,
Z.
,
Jiang
,
C.
,
Wang
,
G. G.
, and
Han
,
X.
,
2015
, “
First and Second Order Approximate Reliability Analysis Methods Using Evidence Theory
,”
Reliab. Eng. Syst. Saf.
,
137
, pp.
40
49
.
19.
Lu
,
Z.-H.
,
Cai
,
C.-H.
,
Zhao
,
Y.-G.
,
Leng
,
Y.
, and
Dong
,
Y.
,
2020
, “
Normalization of Correlated Random Variables in Structural Reliability Analysis Using Fourth-Moment Transformation
,”
Struct. Saf.
,
82
, p.
101888
.
20.
Rajan
,
A.
,
Luo
,
F. J.
,
Kuang
,
Y. C.
,
Bai
,
Y.
, and
Po-Leen Ooi
,
M.
,
2020
, “
Reliability-Based Design Optimisation of Structural Systems Using High-Order Analytical Moments
,”
Struct. Saf.
,
86
, p.
101970
.
21.
Bae
,
S.
,
Park
,
C.
, and
Kim
,
N. H.
,
2020
, “
Estimating Effect of Additional Sample on Uncertainty Reduction in Reliability Analysis Using Gaussian Process
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111706
.
22.
Zhang
,
D.
,
Liang
,
Y.
,
Cao
,
L.
,
Liu
,
J.
, and
Han
,
X.
,
2022
, “
Evidence-Theory-Based Reliability Analysis Through Kriging Surrogate Model
,”
ASME J. Mech. Des.
,
144
(
3
), p.
031701
.
23.
Suryawanshi
,
A.
, and
Ghosh
,
D.
,
2015
, “
Reliability Based Optimization in Aeroelastic Stability Problems Using Polynomial Chaos Based Metamodels
,”
Struct. Multidiscipl. Optim.
,
53
(
5
), pp.
1069
1080
.
24.
Behtash
,
M.
, and
Alexander-Ramos
,
M. J.
,
2022
, “
A Reliability-Based Formulation for Simulation-Based Control Co-Design Using Generalized Polynomial Chaos Expansion
,”
ASME J. Mech. Des.
,
144
(
5
), p.
051705
.
25.
Shi
,
L.
,
Sun
,
B.
, and
Ibrahim
,
D. S.
,
2019
, “
An Active Learning Reliability Method With Multiple Kernel Functions Based on Radial Basis Function
,”
Struct. Multidiscipl. Optim.
,
60
(
1
), pp.
211
229
.
26.
Hadidi
,
A.
,
Azar
,
B. F.
, and
Rafiee
,
A.
,
2017
, “
Efficient Response Surface Method for High-Dimensional Structural Reliability Analysis
,”
Struct. Saf.
,
68
, pp.
15
27
.
27.
Hosni Elhewy
,
A.
,
Mesbahi
,
E.
, and
Pu
,
Y.
,
2006
, “
Reliability Analysis of Structures Using Neural Network Method
,”
Probabilistic Eng. Mech.
,
21
(
1
), pp.
44
53
.
28.
Zhang
,
J.
,
Xiao
,
M.
,
Gao
,
L.
, and
Chu
,
S.
,
2019
, “
A Combined Projection-Outline-Based Active Learning Kriging and Adaptive Importance Sampling Method for Hybrid Reliability Analysis With Small Failure Probabilities
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
13
33
.
29.
Au
,
S.-K.
, and
Beck
,
J. L.
,
1999
, “
A New Adaptive Importance Sampling Scheme for Reliability Calculations
,”
Struct. Saf.
,
21
(
2
), pp.
135
158
.
30.
Koutsourelakis
,
P.-S.
,
Pradlwarter
,
H.
, and
Schuëller
,
G.
,
2004
, “
Reliability of Structures in High Dimensions, Part I: Algorithms and Applications
,”
Probabilistic Eng. Mech.
,
19
(
4
), pp.
409
417
.
31.
Song
,
J.
,
Valdebenito
,
M.
,
Wei
,
P.
,
Beer
,
M.
, and
Lu
,
Z.
,
2020
, “
Non-Intrusive Imprecise Stochastic Simulation by Line Sampling
,”
Struct. Saf.
,
84
, p.
101936
.
32.
Depina
,
I.
,
Papaioannou
,
I.
,
Straub
,
D.
, and
Eiksund
,
G.
,
2017
, “
Coupling the Cross-Entropy With the Line Sampling Method for Risk-Based Design Optimization
,”
Struct. Multidiscipl. Optim.
,
55
(
5
), pp.
1589
1612
.
33.
Zhang
,
X.
,
Lu
,
Z.
,
Yun
,
W.
,
Feng
,
K.
, and
Wang
,
Y.
,
2020
, “
Line Sampling-Based Local and Global Reliability Sensitivity Analysis
,”
Struct. Multidiscipl. Optim.
,
61
(
1
), pp.
267
281
.
34.
Au
,
S.-K.
, and
Beck
,
J. L.
,
2001
, “
Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation
,”
Probabilistic Eng. Mech.
,
16
(
4
), pp.
263
277
.
35.
Wang
,
Z.
,
Mourelatos
,
Z. P.
,
Li
,
J.
,
Baseski
,
I.
, and
Singh
,
A.
,
2014
, “
Time-Dependent Reliability of Dynamic Systems Using Subset Simulation With Splitting Over a Series of Correlated Time Intervals
,”
ASME J. Mech. Des.
,
136
(
6
), p.
061008
.
36.
Meng
,
D.
,
Li
,
Y.-F.
,
Huang
,
H.-Z.
,
Wang
,
Z.
, and
Liu
,
Y.
,
2015
, “
Reliability-Based Multidisciplinary Design Optimization Using Subset Simulation Analysis and Its Application in the Hydraulic Transmission Mechanism Design
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051402
.
37.
Schneider
,
R.
,
Thöns
,
S.
, and
Straub
,
D.
,
2017
, “
Reliability Analysis and Updating of Deteriorating Systems With Subset Simulation
,”
Struct. Saf.
,
64
, pp.
20
36
.
38.
Rashki
,
M.
,
Miri
,
M.
, and
Azhdary Moghaddam
,
M.
,
2012
, “
A New Efficient Simulation Method to Approximate the Probability of Failure and Most Probable Point
,”
Struct. Saf.
,
39
, pp.
22
29
.
39.
Okasha
,
N. M.
,
2016
, “
An Improved Weighted Average Simulation Approach for Solving Reliability-Based Analysis and Design Optimization Problems
,”
Struct. Saf.
,
60
, pp.
47
55
.
40.
Meng
,
Z.
,
Pang
,
Y.
, and
Zhou
,
H.
,
2021
, “
An Augmented Weighted Simulation Method for High-Dimensional Reliability Analysis
,”
Struct. Saf.
,
93
, p.
102117
.
41.
Bao
,
Y.
,
Xiang
,
Z.
, and
Li
,
H.
,
2021
, “
Adaptive Subset Searching-Based Deep Neural Network Method for Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
213
, p.
107778
.
42.
Cheng
,
K.
,
Lu
,
Z.
,
Xiao
,
S.
, and
Lei
,
J.
,
2022
, “
Estimation of Small Failure Probability Using Generalized Subset Simulation
,”
Mech. Syst. Signal Process
,
163
, p.
108114
.
43.
Li
,
H.-S.
, and
Cao
,
Z.-J.
,
2016
, “
Matlab Codes of Subset Simulation for Reliability Analysis and Structural Optimization
,”
Struct. Multidiscipl. Optim.
,
54
(
2
), pp.
391
410
.
44.
Bartilson
,
D. T.
,
Jang
,
J.
, and
Smyth
,
A. W.
,
2019
, “
Finite Element Model Updating Using Objective-Consistent Sensitivity-Based Parameter Clustering and Bayesian Regularization
,”
Mech. Syst. Signal Process
,
114
, pp.
328
345
.
45.
Mahapatra
,
S. S.
, and
Sood
,
A. K.
,
2012
, “
Bayesian Regularization-Based Levenberg–Marquardt Neural Model Combined With BFOA for Improving Surface Finish of FDM Processed Part
,”
Int. J. Adv. Manuf. Technol.
,
60
(
9–12
), pp.
1223
1235
.
46.
Tian
,
K.
,
Li
,
Z.
,
Zhang
,
J.
,
Huang
,
L.
, and
Wang
,
B.
,
2021
, “
Transfer Learning Based Variable-Fidelity Surrogate Model for Shell Buckling Prediction
,”
Comput. Struct.
,
273
, p.
114285
.
47.
Marelli
,
S.
,
Schöbi
,
R.
, and
Sudret
,
B.
,
2021
, “UQLab User Manual–Structural Reliability (Rare Event Estimation),” Report# UQLab-V1, pp.
3
107
.
48.
Guo
,
J.
, and
Du
,
X.
,
2009
, “
Reliability Sensitivity Analysis With Random and Interval Variables
,”
Int. J. Numer. Methods Eng.
,
78
(
13
), pp.
1585
1617
.
49.
Wang
,
Z.
, and
Shafieezadeh
,
A.
,
2021
, “
Metamodel-Based Subset Simulation Adaptable to Target Computational Capacities: The Case for High-Dimensional and Rare Event Reliability Analysis
,”
Struct. Multidiscipl. Optim.
,
64
(
2
), pp.
649
675
.
50.
Lee
,
K. S.
, and
Geem
,
Z. W.
,
2004
, “
A New Structural Optimization Method Based on the Harmony Search Algorithm
,”
Comput. Struct.
,
82
(
9–10
), pp.
781
798
.
51.
Wei
,
P.
,
Lu
,
Z.
, and
Song
,
J.
,
2014
, “
Extended Monte Carlo Simulation for Parametric Global Sensitivity Analysis and Optimization
,”
AIAA J.
,
52
(
4
), pp.
867
878
.
You do not currently have access to this content.