Abstract

Requirement changes can result in substantial overdesign because of the way design margins are allocated at the beginning of the design process. We present a design optimization method for minimizing overdesign by making use of additive remanufacturing and recently defined constituents of design margins (buffer and excess). The method can be used to obtain a set of design decisions for different changing requirement scenarios. We demonstrate our method by means of a turbine rear structure design problem where changes in the temperature loads are met by depositing different types of stiffeners on the outer casing. The results of the case study are visualized in a tradespace, which allows for comparison between sets of optimal, flexible, and robust designs. Results show that the optimized set of design decisions balances flexibility and robustness in a cost-effective manner.

References

1.
Peterson
,
C.
,
Paasch
,
R. K.
,
Ge
,
P.
, and
Dietterich
,
T. G.
,
2007
, “
Product Innovation for Interdisciplinary Design Under Changing Requirements
,”
Proceedings of the International Conference on Engineering Design
,
Paris, France
,
Aug. 28–31
, pp.
861
862
.
2.
Eckert
,
C.
,
Isaksson
,
O.
, and
Earl
,
C.
,
2019
, “
Design Margins: A Hidden Issue in Industry
,”
Des. Sci.
,
5
(
E9
), p.
e9
.
3.
Long
,
D.
, and
Ferguson
,
S.
,
2017
, “
A Case Study of Evolvability and Excess on the B-52 Stratofortress and F/A-18 Hornet
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 4
,
Cleveland, OH
,
Aug. 6–9
,
American Society of Mechanical Engineers (ASME)
.
4.
Ullman
,
D.
,
2009
,
The Mechanical Design Process
,
McGraw-Hill Education
,
New York
.
5.
Ijomah
,
W. L.
,
2009
, “
Addressing Decision Making for Remanufacturing Operations and Design-for-Remanufacture
,”
Int. J. Sustain. Eng.
,
2
(
2
), pp.
91
102
.
6.
Ijomah
,
W.
,
McMahon
,
C.
,
Hammond
,
G.
, and
Newman
,
S.
,
2007
, “
Development of Robust Design-for-Remanufacturing Guidelines to Further the Aims of Sustainable Development
,”
Int. J. Prod. Res.
,
45
(
18–19
), pp.
4513
4536
.
7.
Golinska
,
P.
,
Kosacka
,
M.
,
Mierzwiak
,
R.
, and
Werner-Lewandowska
,
K.
,
2015
, “
Grey Decision Making as a Tool for the Classification of the Sustainability Level of Remanufacturing Companies
,”
J. Cleaner Prod.
,
105
, pp.
28
40
.
8.
Cooper
,
R. G.
,
2008
, “
Perspective: The Stage-Gates® Idea-to-Launch Process—Update, What’s New, and NexGen Systems
,”
J. Product Innov. Manage.
,
25
(
3
), pp.
213
232
.
9.
Mcmanus
,
H. L.
,
Richards
,
M. G.
,
Ross
,
A. M.
, and
Hastings
,
D. E.
,
2007
, “
A Framework for Incorporating Ilities in Tradespace Studies
,”
Proceedings of the AIAA SPACE 2007 Conference & Exposition
,
Long Beach, CA
,
Sept. 18–20
.
10.
Clarkson
,
P. J.
,
Simons
,
C.
, and
Eckert
,
C.
,
2004
, “
Predicting Change Propagation in Complex Design
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
788
797
.
11.
Morkos
,
B.
,
Shankar
,
P.
, and
Summers
,
J. D.
,
2012
, “
Predicting Requirement Change Propagation, Using Higher Order Design Structure Matrices: An Industry Case Study
,”
J. Eng. Des.
,
23
(
12
), pp.
905
926
.
12.
Morkos
,
B.
, and
Summers
,
J. D.
,
2010
, “
Requirement Change Propagation Prediction Approach: Results From an Industry Case Study
,”
Proceedings of the ASME Design Engineering Technical Conference, Vol. 1
,
Montreal, Quebec, Canada
,
Aug. 15–18
,
American Society of Mechanical Engineers Digital Collection
, pp.
111
121
.
13.
Koh
,
E. C. Y.
,
Caldwell
,
N. H. M.
, and
Clarkson
,
P. J.
,
2012
, “
A Method to Assess the Effects of Engineering Change Propagation
,”
Res. Eng. Des.
,
23
(
4
), pp.
329
351
.
14.
Tackett
,
M. W. P.
,
Mattson
,
C. A.
, and
Ferguson
,
S. M.
,
2014
, “
A Model for Quantifying System Evolvability Based on Excess and Capacity
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051002
.
15.
Cansler
,
E. Z.
,
White
,
S. B.
,
Ferguson
,
S. M.
, and
Mattson
,
C. A.
,
2016
, “
Excess Identification and Mapping in Engineered Systems
,”
ASME J. Mech. Des.
,
138
(
8
), p.
081103
.
16.
Rehn
,
C. F.
,
Pettersen
,
S. S.
,
Erikstad
,
S. O.
, and
Asbjørnslett
,
B. E.
,
2018
, “
Investigating Tradeoffs Between Performance, Cost and Flexibility for Reconfigurable Offshore Ships
,”
Ocean Eng.
,
147
, pp.
546
555
.
17.
Cardin
,
M. A.
,
Xie
,
Q.
,
Ng
,
T. S.
,
Wang
,
S.
, and
Hu
,
J.
,
2017
, “
An Approach for Analyzing and Managing Flexibility in Engineering Systems Design Based on Decision Rules and Multistage Stochastic Programming
,”
IISE Trans.
,
49
(
1
), pp.
1
12
.
18.
Cross
,
P. L.
, and
Mulford
,
M.
,
2015
, “
Realizing Collaborative Systems Design for Missile Seekers by Combining Design Margin Analysis With Multi-Disciplinary Optimization
,”
Concurr. Eng. Res. Appl.
,
23
(
3
), pp.
226
235
.
19.
Villanueva
,
D.
,
Haftka
,
R. T.
, and
Sankar
,
B. V.
,
2014
, “
Accounting for Future Redesign to Balance Performance and Development Costs
,”
Reliab. Eng. Syst. Saf.
,
124
, pp.
56
67
.
20.
Rapp
,
S.
,
Chinnam
,
R.
,
Doerry
,
N.
,
Murat
,
A.
, and
Witus
,
G.
,
2018
, “
Product Development Resilience Through Set-Based Design
,”
Syst. Eng.
,
21
(
5
), pp.
490
500
.
21.
Cardin
,
M. A.
, and
Hu
,
J.
,
2016
, “
Analyzing the Tradeoffs Between Economies of Scale, Time-Value of Money, and Flexibility in Design Under Uncertainty: Study of Centralized Versus Decentralized Waste-to-Energy Systems
,”
ASME J. Mech. Des.
,
138
(
1
), p.
011401
.
22.
Ross
,
A.
,
Rhodes
,
D.
, and
Hastings
,
D. E.
,
2008
, “
Defining Changeability: Reconciling Flexibility, Adaptability, Scalability, Modifiability, and Robustness for Maintaining System Lifecycle Value
,”
Syst. Eng.
,
11
(
3
), pp.
246
262
.
23.
Fricke
,
E.
, and
Schulz
,
A. P.
,
2005
, “
Design for Changeability (DfC): Principles to Enable Changes in Systems Throughout Their Entire Lifecycle
,”
Syst. Eng.
,
8
(
4
), pp.
342
359
.
24.
Chalupnik
,
M. J.
,
Wynn
,
D. C.
, and
Clarkson
,
P. J.
,
2013
, “
Comparison of Ilities for Protection Against Uncertainty in System Design
,”
J. Eng. Des.
,
24
(
12
), pp.
814
829
.
25.
Viscito
,
L.
, and
Ross
,
A.
,
2009
, “
Quantifying Flexibility in Tradespace Exploration: Value-Weighted Filtered Outdegree
,”
Proceedings of the AIAA SPACE 2009 Conference & Exposition
,
Pasadena, CA
,
Sept. 14–17
,
American Institute of Aeronautics and Astronautics
.
26.
Small
,
C.
,
Parnell
,
G. S.
,
Pohl
,
E.
,
Goerger
,
S. R.
,
Cilli
,
M.
, and
Specking
,
E.
,
2019
, “
Demonstrating Set-Based Design Techniques: An Unmanned Aerial Vehicle Case Study
,”
J. Defense Model. Simul.
,
17
, pp.
1
17
.
27.
Pradlwarter
,
H. J.
,
Pellissetti
,
M. F.
,
Schenk
,
C. A.
,
Schuëller
,
G. I.
,
Kreis
,
A.
,
Fransen
,
S.
,
Calvi
,
A.
, and
Klein
,
M.
,
2005
, “
Realistic and Efficient Reliability Estimation for Aerospace Structures
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
12–16
), pp.
1597
1617
.
28.
Frangopol
,
D. M.
, and
Maute
,
K.
,
2003
, “
Life-Cycle Reliability-Based Optimization of Civil and Aerospace Structures
,”
Comput. Struct.
,
81
(
7
), pp.
397
410
.
29.
Zhu
,
S.
,
Huang
,
H.
,
Smith
,
R.
,
Ontiveros
,
V.
,
He
,
L.
, and
Modarres
,
M.
,
2013
, “
Bayesian Framework for Probabilistic Low Cycle Fatigue Life Prediction and Uncertainty Modeling of Aircraft Turbine Disk Alloys
,”
Probab. Eng. Mech.
,
34
, pp.
114
122
.
30.
Shahraki
,
A. F.
, and
Noorossana
,
R.
,
2014
, “
Reliability-Based Robust Design Optimization: A General Methodology Using Genetic Algorithm
,”
Comput. Ind. Eng.
,
74
, pp.
199
207
.
31.
Bucher
,
C.
,
2009
,
Computational Analysis of Ramdomness in Structural Mechanics
,
CRC Press
,
London
.
32.
Magnusen
,
P. E.
,
Bucci
,
R. J.
,
Hinkle
,
A. J.
,
Brockenbrough
,
J. R.
, and
Konish
,
H. J.
,
1997
, “
Analysis and Prediction of Microstructural Effects on Long-Term Fatigue Performance of an Aluminum Aerospace Alloy
,”
Int. J. Fatigue
,
19
(
93
), pp.
275
283
.
33.
Zhang
,
M.
,
Gou
,
W.
,
Li
,
L.
,
Wang
,
X.
, and
Yue
,
Z.
,
2016
, “
Multidisciplinary Design and Optimization of the Twin-Web Turbine Disk
,”
Struct. Multidiscipl. Optim.
,
53
(
5
), pp.
1129
1141
.
34.
Kleiber
,
M.
,
Knabel
,
J.
, and
Rojek
,
J.
,
2004
, “
Response Surface Method for Probabilistic Assessment of Metal Forming Failures
,”
Int. J. Numer. Methods Eng.
,
60
(
1
), pp.
51
67
.
35.
Abramson
,
M. A.
,
Audet
,
C.
,
Chrissis
,
J. W.
, and
Walston
,
J. G.
,
2009
, “
Mesh Adaptive Direct Search Algorithms for Mixed Variable Optimization
,”
Optim. Lett.
,
3
(
1
), pp.
35
47
.
36.
Abramson
,
M. A.
,
2004
, “
Mixed Variable Optimization of a Load-Bearing Thermal Insulation System Using a Filter Pattern Search Algorithm
,”
Optim. Eng.
,
5
(
2
), pp.
157
177
.
37.
Abramson
,
M. A.
,
Asaki
,
T. J.
,
Dennis
,
J. E.
,
O’Reilly
,
K. R.
, and
Pingel
,
R. L.
,
2008
, “
Quantitative Object Reconstruction Using Abel Transform X-Ray Tomography and Mixed Variable Optimization
,”
SIAM J. Imag. Sci.
,
1
(
3
), pp.
322
342
.
38.
Alhandawi
,
K.
,
Andersson
,
P.
,
Panarotto
,
M.
,
Isaksson
,
O.
, and
Kokkolaras
,
M.
,
2021
, “
Scalable Set-Based Design Optimization and Remanufacturing for Meeting Changing Requirements
,”
ASME J. Mech. Des.
,
143
(
2
), p.
021702
.
39.
U.S. Army Materiel Command
,
1970
, “
Engineering Design Handbook: Automotive Series-Bodies and Hulls
.”
40.
Talgorn
,
B.
,
Audet
,
C.
,
Le Digabel
,
S.
, and
Kokkolaras
,
M.
,
2018
, “
Locally Weighted Regression Models for Surrogate-Assisted Design Optimization
,”
Optim. Eng.
,
19
(
1
), pp.
213
238
.
41.
Brown
,
N.
, and
Mueller
,
C.
,
2019
, “
Quantifying Diversity in Parametric Design: A Comparison of Possible Metrics
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
33
(
1
), pp.
40
53
.
42.
Shankar
,
P.
,
Summers
,
J. D.
, and
Phelan
,
K.
,
2017
, “
A Verification and Validation Planning Method to Address Change Propagation Effects in Engineering Design and Manufacturing
,”
Concurr. Eng. Res. Appl.
,
25
(
2
), pp.
151
162
.
43.
Giffin
,
M.
,
De Weck
,
O.
,
Bounova
,
G.
,
Keller
,
R.
,
Eckert
,
C.
, and
Clarkson
,
P. J.
,
2009
, “
Change Propagation Analysis in Complex Technical Systems
,”
ASME J. Mech. Des.
,
131
(
8
), p.
081001
.
44.
Almefelt
,
L.
,
Berglund
,
F.
,
Nilsson
,
P.
, and
Malmqvist
,
J.
,
2006
, “
Requirements Management in Practice: Findings From an Empirical Study in the Automotive Industry
,”
Res. Eng. Des.
,
17
(
3
), pp.
113
134
.
45.
Eckert
,
C.
,
Isaksson
,
O.
,
Lebjioui
,
S.
,
Earl
,
C. F.
, and
Edlund
,
S.
,
2020
, “
Design Margins in Industrial Practice
,”
Des. Sci.
,
e6
, p.
7
.
46.
Lawand
,
L.
,
Panarotto
,
M.
,
Andersson
,
P.
,
Isaksson
,
O.
, and
Kokkolaras
,
M.
,
2020
, “
Dynamic Lifecycle Cost Modeling for Adaptable Design Optimization of Additively Remanufactured Aeroengine Components
,”
Aerospace
,
7
(
8
), p.
110
.
You do not currently have access to this content.