Abstract

The components of complex systems such as automobiles or ships communicate via connectors, including wires, hoses, or pipes whose weight could substantially increase the total weight of the system. Hence, it is of paramount importance to lay out these connectors such that their overall weight is minimized. In this paper, a computationally efficient approach is proposed to optimize the layout of flexible connectors (e.g., cable harnesses) by minimizing their overall length while maximizing their common length. The approach provides a framework to mathematically model the cable harness layout optimization problem. A Multiobjective Genetic Algorithm (MOGA) solver is then applied to solve the optimization problem, which outputs a set of non-dominated solutions to the bi-objective problem. Finally, the effects of the workspace’s geometric structure on the optimal layouts of cable harnesses are discussed using sample test cases. The overarching objective of this study is to provide insight for designers of cable harnesses when deciding on the final layout of connectors considering aspects such as accessibility to and maintainability of these connectors.

References

1.
Qu
,
Y.
,
Jiang
,
D.
,
Gao
,
G.
, and
Huo
,
Y.
,
2016
, “
Pipe Routing Approach for Aircraft Engines Based on Ant Colony Optimization
,”
J. Aerosp. Eng.
,
29
(
3
), p.
04015057
.
2.
Liu
,
Q.
, and
Wang
,
C.
,
2011
, “
A Discrete Particle Swarm Optimization Algorithm for Rectilinear Branch Pipe Routing
,”
Assem. Autom.
,
31
(
4
), pp.
363
368
.
3.
Sui
,
H.
, and
Niu
,
W.
,
2016
, “
Branch-Pipe-Routing Approach for Ships Using Improved Genetic Algorithm
,”
Front. Mech. Eng.
,
11
(
3
), pp.
316
323
.
4.
Zhang
,
Y.
, and
Bai
,
X. L.
,
2013
, “
Research on the Automatic and Optimized Pipe Routing Layout for Aero-Engines Based on Improved Artificial Fish Swarm Algorithm
,”
Appl. Mech. Mater.
,
437
, pp.
275
280
.
5.
Yan
,
J.
,
Zuo
,
D. W.
,
Jiao
,
G. M.
, and
Li
,
J. P.
,
2007
, “
Survey on the Design and Planning of Cable Harness Assemblies in Electromechanical Products
,”
Appl. Mech. Mater.
,
10–12
, pp.
889
893
.
6.
Ng
,
F. M.
,
Ritchie
,
J. M.
, and
Simmons
,
J. E. L.
,
2000
, “
The Design and Planning of Cable Harness Assemblies
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
214
(
10
), pp.
881
890
.
7.
Trommnau
,
J.
,
Kühnle
,
J.
,
Siegert
,
J.
,
Inderka
,
R.
, and
Bauernhansl
,
T.
,
2019
, “
Overview of the State of the Art in the Production Process of Automotive Wire Harnesses, Current Research and Future Trends
,”
Procedia CIRP
,
81
, pp.
387
392
.
8.
Billsdon
,
R.
, and
Wallington
,
K.
,
1998
, “
Wiring Harness Design: Can a Computer Help?
,”
Comput. Control Eng. J.
,
9
(
4
), pp.
163
168
.
9.
Lindfors
,
N.
,
Pesonen
,
A.
,
Franck
,
C.
, and
Kuosmanen
,
P.
,
2003
, “
Cabling Design Utilizing 3D CAD in Product Development of an Electric Device
,”
DS 31: Proceedings of the 14th International Conference on Engineering Design
,
A.
Folkeson
,
K.
Gralen
,
M.
Norell
, and
U.
Sellgren
, eds.,
Stockholm
, pp.
29
30
.
10.
Mingji
,
H.
, and
Dong
,
X.
,
2010
, “
Research on Flexible Cable Geometric Modeling Technology in Virtual Maintenance Based on VRML
,”
International Conference on Mechanic Automation and Control Engineering
,
IEEE
,
Wuhan, China
, pp.
772
775
.
11.
Han
,
N.
, and
Guo
,
L.
,
2017
, “
The Research on Routing Optimization Method Using Undirected-Graph in Cable Harness Design
,”
Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition. Volume 11: Systems, Design, and Complexity
,
Tampa, FL
, pp.
1
6
.
12.
Valentini
,
P. P.
,
2011
, “
Interactive Cable Harnessing in Augmented Reality
,”
Int. J. Interact. Des. Manuf.
,
5
(
1
), pp.
45
53
.
13.
Ritchie
,
J.
,
Simmons
,
J.
,
Holt
,
P.
, and
Russell
,
G.
,
2002
, “
Immersive Virtual Reality as an Interactive Tool for Cable Harness Design
,”
Proceedings of PRASIC
,
Brasov, România
, pp.
249
255
.
14.
Simmons
,
J.
,
Ritchie
,
J.
, and
Holt
,
P. O. B.
,
2002
, “
Immersing the Human in the Design: Design-for-Manufacture of Cable Harnesses
,”
Proceedings of SCI 2002 (Sixth Multi-Conference on Systemic, Cybernetics and Informatics)
,
Orlando, FL
,
July 14–18
.
15.
Ritchie
,
J. M.
,
Robinson
,
G.
,
Day
,
P. N.
,
Dewar
,
R. G.
,
Sung
,
R. C. W.
, and
Simmons
,
J. E. L.
,
2007
, “
Cable Harness Design, Assembly and Installation Planning Using Immersive Virtual Reality
,”
Virtual Reality
,
11
(
4
), pp.
261
273
.
16.
O’B Holt
,
P.
,
Ritchie
,
J. M.
,
Day
,
P. N.
,
Simmons
,
J. E. L.
,
Robinson
,
G.
,
Russell
,
G. T.
, and
Ng
,
F. M.
,
2004
, “
Immersive Virtual Reality In Cable and Pipe Routing: Design Metaphors and Cognitive Ergonomics
,”
ASME J. Comput. Inf. Sci. Eng.
,
4
(
3
), pp.
161
170
.
17.
Lin
,
C.
,
Rao
,
L.
,
D'Ambrosio
,
J.
, and
Sangiovanni-vincentelli
,
A.
,
2014
, “
Electrical Architecture Optimization and Selection—Cost Minimization via Wire Routing and Wire Sizing
,”
SAE Int. J. Passeng. Cars-Electron. Electr. Syst.
,
7
(
2
), pp.
502
509
.
18.
Cerezuela
,
C.
,
Cauvin
,
A.
,
Boucher
,
X.
, and
Kieffer
,
J.-P.
,
1998
, “
A Decision Support System for a Concurrent Design of Cable Harnesses: Conceptual Approach and Implementation
,”
Concurrent Eng.
,
6
(
1
), pp.
43
52
.
19.
Shang
,
W.
,
Liu
,
J.
,
Ning
,
R.
, and
Liu
,
J.
,
2012
, “
A Computational Framework for Cable Layout Design in Complex Products
,”
Phys. Procedia
,
33
, pp.
1879
1885
.
20.
Van Der Velden
,
C.
,
Bil
,
C.
,
Yu
,
X.
, and
Smith
,
A.
,
2007
, “
An Intelligent System for Automatic Layout Routing in Aerospace Design
,”
Innov. Syst. Software Eng.
,
3
(
2
), pp.
117
128
.
21.
Pemarathne
,
W. P. J.
, and
Fernando
,
T. G. I.
,
2016
, “
Wire and Cable Routings and Harness Designing Systems with AI, a Review
,”
IEEE International Conference on Information and Automation for Sustainability (ICIAfS)
,
IEEE
,
Galle, Sri Lanka
, pp.
1
6
.
22.
O’Rourke
,
J.
, and
Mallinckrodt
,
A. J.
,
1995
,
Computational Geometry in C
, Computers in Physics.
23.
Gilbert
,
E. N.
, and
Pollak
,
H. O.
,
1968
, “
Steiner Minimal Trees
,”
SIAM J. Appl. Math.
,
16
(
1
), pp.
1
29
.
24.
Jeng
,
D. J. F.
, and
Watada
,
J.
,
2007
, “
Non-Deterministic Algorithm for Routing Optimization: A Case Study
,”
Second International Conference on Innovative Computing, Information and Control, ICICIC 2007
,
Kumamoto, Japan
.
25.
Marianov
,
V.
,
Gutiérrez-Jarpa
,
G.
,
Obreque
,
C.
, and
Cornejo
,
O.
,
2012
, “
Lagrangean Relaxation Heuristics for the P-Cable-Trench Problem
,”
Comput. Oper. Res.
,
39
(
3
), pp.
620
628
.
26.
Schwarze
,
S.
,
2015
, “
The Multi-Commodity Cable Trench Problem
,”
23rd European Conference on Information Systems, ECIS 2015
,
Münster, Germany
, pp.
1
14
.
27.
Vasko
,
F. J.
,
Landquist
,
E.
,
Kresge
,
G.
,
Tal
,
A.
,
Jiang
,
Y.
, and
Papademetris
,
X.
,
2015
, “
A Simple and Efficient Strategy for Solving Very Large-Scale Generalized Cable-Trench Problems
,”
Networks
,
67
(
3
), pp.
199
208
.
28.
Calik
,
H.
,
Leitner
,
M.
, and
Luipersbeck
,
M.
,
2017
, “
A Benders Decomposition Based Framework for Solving Cable Trench Problems
,”
Comput. Oper. Res.
,
81
(
C
), pp.
128
140
.
29.
Zyma
,
K.
,
Girard
,
J. N.
,
Landquist
,
E.
,
Schaper
,
G.
, and
Vasko
,
F. J.
,
2017
, “
Formulating and Solving a Radio Astronomy Antenna Connection Problem as a Generalized Cable-Trench Problem: An Empirical Study
,”
Int. Trans. Oper. Res.
,
24
(
5
), pp.
943
957
.
30.
Winter
,
P.
,
1993
, “
Euclidean Steiner Minimal Trees with Obstacles and Steiner Visibility Graphs
,”
Discret. Appl. Math.
,
47
(
2
), pp.
187
206
.
31.
Müller-Hannemann
,
M.
, and
Tazari
,
S.
,
2010
, “
A Near Linear Time Approximation Scheme for Steiner Tree among Obstacles in the Plane
,”
Comput. Geom. Theory Appl.
,
43
(
4
), pp.
395
409
.
32.
Parque
,
V.
, and
Miyashita
,
T.
,
2018
, “
Obstacle-Avoiding Euclidean Steiner Trees by n-Star Bundles
,”
Proceedings—International Conference on Tools with Artificial Intelligence, ICTAI
,
IEEE
,
Volos, Greece
, pp.
315
319
.
33.
Ajwani
,
G.
,
Chu
,
C.
, and
Mak
,
W. K.
,
2011
, “
FOARS: FLUTE Based Obstacle-Avoiding Rectilinear Steiner Tree Construction
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
,
30
(
2
), pp.
194
204
.
34.
Hu
,
Y.
,
Feng
,
Z.
,
Jing
,
T.
,
Hong
,
X.
,
Yang
,
Y.
,
Yu
,
G.
,
Hu
,
X.
, and
Yan
,
G.
,
2004
, “
FORst: A 3-Step Heuristic for Obstacle-Avoiding Rectilinear Steiner Minimal Tree Construction
,”
J. Inf. Comput. Sci.
,
1
(
3
), pp.
107
116
.
35.
Lin
,
C.-W.
,
Chen
,
S.-Y.
,
Li
,
C.-F.
,
Chang
,
Y.-W.
, and
Yang
,
C.-L.
,
2008
, “
Obstacle-Avoiding Rectilinear Steiner Tree Construction Based on Spanning Graphs
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
,
27
(
4
), pp.
643
653
.
36.
Weber
,
A.
, and
Friedrich
,
C. J.
,
1929
,
Alfred Weber’s Theory of the Location of Industries
,
The University of Chicago Press
.
37.
Hamacher
,
H. W.
, and
Klamroth
,
K.
,
2000
, “
Planar Location Problems with Barriers Under Polyhedral Gauges
,”
Ann. Oper. Res.
,
96
(
1/4
), pp.
191
208
.
38.
Katz
,
I. N.
, and
Cooper
,
L.
,
1981
, “
Facility Location in the Presence of Forbidden Regions, I: Formulation and the Case of Euclidean Distance with One Forbidden Circle
,”
Eur. J. Oper. Res.
,
6
(
2
), pp.
166
173
.
39.
Aneja
,
Y. P.
, and
Parlar
,
M.
,
1994
, “
Algorithms for Weber Facility Location in the Presence of Forbidden Regions and/or Barriers to Travel
,”
Transp. Sci.
,
28
(
1
), pp.
70
76
.
40.
Klamroth
,
K.
,
2004
, “
Algebraic Properties of Location Problems with One Circular Barrier
,”
Eur. J. Oper. Res.
,
154
(
1
), pp.
20
35
.
41.
Conru
,
A. B.
,
1994
, “
A Genetic Approach to the Cable Harness Routing Problem
,”
Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence
,
IEEE
,
Orlando, FL
, pp.
200
205
.
42.
Conru
,
A. B.
, and
Cutkosky
,
M. R.
,
1993
, “
Computational Support for Interactive Cable Harness Routing and Design
,”
19th Design Automation Conference: Volume 1—Mechanical System Dynamics; Concurrent and Robust Design; Design for Assembly and Manufacture; Genetic Algorithms in Design and Structural Optimization
,
Albuquerque, NM
,
Sept. 19–22
, pp.
551
558
.
43.
Kimura
,
H.
,
2011
, “
Automatic Designing System for Piping and Instruments Arrangement Including Branches of Pipes
,”
International Conference on Computer Applications in Shipbuilding 2011(ICCAS2011)
, pp.
93
99
.
44.
Zhu
,
Z.
,
La Rocca
,
G.
, and
van Tooren
,
M. J. L.
,
2017
, “
A Methodology to Enable Automatic 3D Routing of Aircraft Electrical Wiring Interconnection System
,”
CEAS Aeronaut. J.
,
8
(
2
), pp.
287
302
.
45.
Kabul
,
I.
,
Gayle
,
R.
, and
Lin
,
M. C.
,
2007
, “
Cable Route Planning in Complex Environments Using Constrained Sampling
,”
Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling—SPM ‘07
, pp.
395
402
.
46.
Hermansson
,
T.
,
Bohlin
,
R.
,
Carlson
,
J. S.
, and
Söderberg
,
R.
,
2016
, “
Automatic Routing of Flexible 1D Components with Functional and Manufacturing Constraints
,”
Comput. Des.
,
79
(
C
), pp.
27
35
.
47.
Masoudi
,
N.
,
Fadel
,
G.
, and
Wiecek
,
M. M.
,
2019
, “
Planning the Shortest Path in Cluttered Environments: A Review and a Planar Convex Hull-Based Approach
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041011
.
48.
Dijkstra
,
E. W.
,
1959
, “
A Note on Two Problems in Connexion with Graphs
,”
Numer. Math.
,
1
(
1
), pp.
269
271
.
49.
Klamroth
,
K.
,
2006
,
Single-Facility Location Problems with Barriers
,
Springer Science & Business Media
.
50.
Kuhn
,
H. W.
,
1973
, “
A Note on Fermat’s Problem
,”
Math. Program.
,
4
(
1
), pp.
98
107
.
51.
Masoudi
,
N.
,
2020
, “
Geometric-Based Optimization Algorithms for Cable Routing and Branching in Cluttered Environments
,”
Clemson University
.
52.
Hormann
,
K.
, and
Agathos
,
A.
,
2001
, “
The Point in Polygon Problem for Arbitrary Polygons
,”
Comput. Geom.
,
20
(
3
), pp.
131
144
.
53.
Redish
,
A. D.
, and
Jacquenot
,
G.
,
2008
, “
Fast InPolygon Detection MEX. Retrieved May 31, 2020
.”.
54.
Whitley
,
D.
,
1994
, “
A Genetic Algorithm Tutorial
,”
Stat. Comput.
,
4
(
2
), pp.
65
85
.
55.
Goldenberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison Wesley
,
Reading, MA
.
56.
Fonseca
,
C. M.
, and
Fleming
,
P. J.
,
1993
, “
Genetic Algorithms for Multiobjective Optimization: Formulation Discussion and Generalization
,”
Proceedings of the Fifth International Conference on Genetic Algorithms
,
ES.
Forrest
, ed.,
Citeseer
, pp.
416
423
.
57.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
58.
Szykman
,
S.
, and
Cagan
,
J.
,
1997
, “
Constrained Three-Dimensional Component Layout Using Simulated Annealing
,”
ASME J. Mech. Des.
,
119
(
1
), pp.
28
35
.
59.
Miao
,
Y.
,
Blouin
,
V. Y.
, and
Fadel
,
G. M.
,
2003
, “
Multi-Objective Configuration Optimization With Vehicle Dynamics Applied to Midsize Truck Design
,”
Proceedings of the ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2: 29th Design Automation Conference, Parts A and B
,
ASME
,
Chicago, IL
, pp.
319
327
.
60.
Grignon
,
P. M.
, and
Fadel
,
G. M.
,
2004
, “
A GA Based Configuration Design Optimization Method
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
6
15
.
61.
Yin
,
S.
,
Cagan
,
J.
, and
Hodges
,
P.
,
2004
, “
Layout Optimization of Shapeable Components With Extended Pattern Search Applied to Transmission Design
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
188
191
.
62.
Dandurand
,
B.
,
Guarneri
,
P.
,
Fadel
,
G. M.
, and
Wiecek
,
M. M.
,
2014
, “
Bilevel Multiobjective Packaging Optimization for Automotive Design
,”
Struct. Multidiscip. Optim.
,
50
(
4
), pp.
663
682
.
63.
Sridhar
,
R.
,
Chandrasekaran
,
M.
,
Sriramya
,
C.
, and
Page
,
T.
,
2016
, “
Optimization of Heterogeneous Bin Packing Using Adaptive Genetic Algorithm
,”
IOP Conference Series: Materials Science and Engineering
,
IOP Publishing
, p.
012026
.
64.
Jessee
,
A.
,
Peddada
,
S. R. T.
,
Lohan
,
D. J.
,
Allison
,
J. T.
, and
James
,
K. A.
,
2020
, “
Simultaneous Packing and Routing Optimization Using Geometric Projection
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111702
.
65.
Panesar
,
A.
,
Brackett
,
D.
,
Ashcroft
,
I.
,
Wildman
,
R.
, and
Hague
,
R.
,
2015
, “
Design Framework for Multifunctional Additive Manufacturing : Placement and Routing of Three-Dimensional Printed Circuit Volumes
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111414
.
You do not currently have access to this content.