Abstract

In the age of Industry 4.0, manufacturing enterprises are under pressure to improve mass customization to satisfy evolving demands in different markets. One challenge is to fulfill orders swiftly at an acceptable cost, while maintaining service quality. To do this, the customer-order decoupling point (CODP), where value-adding activities take place, should be designed and adapted to changing market demands. We propose a formulation-exploration framework to make decisions on customer-order decoupling point positioning and improve the supply chain to support mass customization. A test problem of auto parts manufacturing is used to illustrate the efficacy of our framework. The formulation-exploration framework can be used to design a supply chain to facilitate the mass customization of products, especially when information is incomplete and inaccurate (including uncertainties), and goals conflict with each other. In this paper, we focus on the method embodied in the framework rather than the results per se.

References

1.
Parker
,
C. J.
,
2016
, “
Human Acceptance of 3D Printing in Fashion Paradox: Is Mass Customization A Bridge Too Far?
,”
WIT Trans. Eng. Sci.
,
113
, pp.
373
380
.
2.
Naylor
,
J. B.
,
Naim
,
M. M.
, and
Berry
,
D.
,
1999
, “
Leagility: Integrating the Lean and Agile Manufacturing Paradigms in the Total Supply Chain
,”
Int. J. Prod. Econ.
,
62
(
1–2
), pp.
107
118
. 10.1016/S0925-5273(98)00223-0
3.
Jacobs
,
F. R.
,
Chase
,
R. B.
, and
Aquilano
,
N.
,
2004
,
Operations Management for Competitive Advantage
,
Mc-Graw Hill
,
Boston
,
64
, p.
70
.
4.
Bowersox
,
D. J.
, and
Morash
,
E. A.
,
1989
, “
The Integration of Marketing Flows in Channels of Distribution
,”
Eur. J. Mark.
,
23
(
2
), pp.
58
67
. 10.1108/EUM0000000000546
5.
Trienekens
,
J.
, and
Thoma
,
P.
,
1970
,
Customer Oriented Design of Quality Management Systems (QMS): Learning From Industrial Manufacturing
,
WIT Transactions on Information and Communication Technologies
,
Edinburgh, UK
, p.
9
.
6.
Mitsukuni
,
K.
,
Nakamura
,
Y.
, and
Aoki
,
T.
,
2003
, “
New Supply Chain Planning Method Based on Coupling Point Inventory Planning
,”
Proceedings of EFTA 2003, 2003 IEEE Conference on Emerging Technologies and Factory Automation (Cat. No. 03TH8696)
,
Lisbon, Portugal
,
Sept. 16–19
, pp.
13
18
.
7.
Hajfathaliha
,
A.
,
Teimoury
,
E.
,
Khondabi
,
I. G.
, and
Fathi
,
M.
,
2011
, “
Using Queuing Approach for Locating the Order Penetration Point in a Two-Echelon Supply Chain With Customer Loss
,”
Int. J. Bus. Manage.
,
6
(
1
), p.
258
.
8.
Rudberg
,
M.
, and
Wikner
,
J.
,
2004
, “
Mass Customization in Terms of the Customer Order Decoupling Point
,”
Prod. Plann. Control
,
15
(
4
), pp.
445
458
. 10.1080/0953728042000238764
9.
Iravani
,
S. M.
,
Liu
,
T.
, and
Simchi-Levi
,
D.
,
2012
, “
Optimal Production and Admission Policies in Make-To-Stock/Make-To-Order Manufacturing Systems
,”
Prod. Oper. Manage.
,
21
(
2
), pp.
224
235
. 10.1111/j.1937-5956.2011.01260.x
10.
Salvendy
,
G.
,
2001
,
Handbook of Industrial Engineering: Technology and Operations Management
,
John Wiley and Sons
,
New York
.
11.
Teimoury
,
E.
,
Modarres
,
M.
,
Khondabi
,
I.
, and
Fathi
,
M.
,
2012
, “
A Queuing Approach for Making Decisions About Order Penetration Point in Multiechelon Supply Chains
,”
Int. J. Adv. Manuf. Technol.
,
63
(
1–4
), pp.
359
371
. 10.1007/s00170-012-3913-x
12.
Teimoury
,
E.
, and
Fathi
,
M.
,
2013
, “
An Integrated Operations-Marketing Perspective for Making Decisions About Order Penetration Point in Multi-Product Supply Chain: A Queuing Approach
,”
Int. J. Prod. Res.
,
51
(
18
), pp.
5576
5596
. 10.1080/00207543.2013.789937
13.
Zhou
,
W.
,
Huang
,
W.
, and
Zhang
,
R.
,
2014
, “
A Two-Stage Queueing Network on Form Postponement Supply Chain With Correlated Demands
,”
Appl. Math. Model.
,
38
(
11–12
), pp.
2734
2743
. 10.1016/j.apm.2013.10.066
14.
Liu
,
W.
,
Wu
,
R.
,
Liang
,
Z.
, and
Zhu
,
D.
,
2018
, “
Decision Model for the Customer Order Decoupling Point Considering Order Insertion Scheduling With Capacity and Time Constraints in Logistics Service Supply Chain
,”
Appl. Math. Model.
,
54
, pp.
112
135
. 10.1016/j.apm.2017.09.027
15.
Jeong
,
I.-J.
,
2011
, “
A Dynamic Model for the Optimization of Decoupling Point and Production Planning in a Supply Chain
,”
Int. J. Prod. Econ.
,
131
(
2
), pp.
561
567
. 10.1016/j.ijpe.2011.02.001
16.
Ghalehkhondabi
,
I.
,
Ardjmand
,
E.
, and
Weckman
,
G.
,
2017
, “
Integrated Decision Making Model for Pricing and Locating the Customer Order Decoupling Point of a Newsvendor Supply Chain
,”
Opsearch
,
54
(
2
), pp.
417
439
. 10.1007/s12597-016-0286-1
17.
Ghalehkhondabi
,
I.
,
Sormaz
,
D.
, and
Weckman
,
G.
,
2016
, “
Multiple Customer Order Decoupling Points Within a Hybrid MTS/MTO Manufacturing Supply Chain With Uncertain Demands in Two Consecutive Echelons
,”
Opsearch
,
53
(
4
), pp.
976
997
. 10.1007/s12597-016-0265-6
18.
Shidpour
,
H.
,
Da Cunha
,
C.
, and
Bernard
,
A.
,
2014
, “
Analyzing Single and Multiple Customer Order Decoupling Point Positioning Based on Customer Value: A Multi-Objective Approach
,”
Procedia Cirp
,
17
, pp.
669
674
. 10.1016/j.procir.2014.01.102
19.
Ahmadi
,
M.
, and
Teimouri
,
E.
,
2008
, “
Determining the Order Penetration Point in Auto Export Supply Chain by the Use of Dynamic Programming
,”
J. Appl. Sci.
,
8
(
18
), pp.
3214
3220
. 10.3923/jas.2008.3214.3220
20.
Liu
,
W.
,
Mo
,
Y.
,
Yang
,
Y.
, and
Ye
,
Z.
,
2015
, “
Decision Model of Customer Order Decoupling Point on Multiple Customer Demands in Logistics Service Supply Chain
,”
Prod. Plann. Control
,
26
(
3
), pp.
178
202
.
21.
Xu
,
X.
, and
Liang
,
Z.
,
2011
, “
CODP Positioning Based on Extension Superiority Evaluation Model
,”
Proceedings of 2011 International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT)
,
Harbin, China
,
Aug. 12–14
, IEEE, pp.
4041
4047
.
22.
Daaboul
,
J.
,
Da Cunha
,
C.
,
Le Duigou
,
J.
,
Novak
,
B.
, and
Bernard
,
A.
,
2015
, “
Differentiation and Customer Decoupling Points: An Integrated Design Approach for Mass Customization
,”
Concurrent Eng.
,
23
(
4
), pp.
284
295
. 10.1177/1063293X15589767
23.
Daaboul
,
J.
,
Laroche
,
F.
, and
Bernard
,
A.
,
2010
, “
Determining the CODP Position by Value Network Modeling and Simulation
,”
Proceedings of the Technology Management Conference (ICE)
,
Lugano, Switzerland
,
June 21–23
, IEEE International, pp.
1
10
.
24.
Wikner
,
J.
,
Naim
,
M. M.
,
Spiegler
,
V. L.
, and
Lin
,
J.
,
2017
, “
IOBPCS Based Models and Decoupling Thinking
,”
Int. J. Prod. Econ.
,
194
, pp.
153
166
. 10.1016/j.ijpe.2017.05.009
25.
Velasquez
,
J.
,
Khakifirooz
,
M.
, and
Fathi
,
M.
,
2019
,
Large Scale Optimization Applied to Supply Chain & Smart Manufacturing: Theory & Applications, Springer Optimization and its Applications
,
Springer Nature
,
Cham, Switzerland
.
26.
Box
,
G. E.
, and
Draper
,
N. R.
,
1987
,
Empirical Model-Building and Response Surfaces
,
Wiley
,
New York
.
27.
Simon
,
H. A.
,
2019
,
The Sciences of The Artificial
,
MIT Press
.
28.
Norman
,
G.
,
1990
,
Production and Operation Management: A Problem-Solving and Decision-Making Approach
,
Dryden Press
,
New York
.
29.
Triantaphyllou
,
E.
, and
Sánchez
,
A.
,
1997
, “
A Sensitivity Analysis Approach for Some Deterministic Multi-Criteria Decision-Making Methods
,”
Decision Sci.
,
28
(
1
), pp.
151
194
. 10.1111/j.1540-5915.1997.tb01306.x
30.
Nellippallil
,
A. B.
,
Mohan
,
P.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2018
, “
Robust Concept Exploration of Materials, Products and Associated Manufacturing Processes
,”
ASME Design Automation Conference
,
Quebec City, Canada
,
Aug. 16–19
, p. V02BT03A010.
31.
Taguchi
,
G.
, and
Clausing
,
D.
,
1990
, “
Robust Quality
,”
Harvard Bus. Rev.
,
68
(
1
), pp.
65
75
.
32.
Taguchi
,
G.
, and
Plains
,
W.
,
1993
,
Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream (ASME Press Series on International Advances in Design Productivity)
, Vol.
191
,
ASME Press
,
New York
, pp.
1
191
.
33.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Mistree
,
F.
,
1996
, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
,
118
(
4
), pp.
478
485
. 10.1115/1.2826915
34.
Isukapalli
,
S.
,
Roy
,
A.
, and
Georgopoulos
,
P.
,
1998
, “
Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems
,”
Risk Analysis
,
18
(
3
), pp.
351
363
. 10.1111/j.1539-6924.1998.tb01301.x
35.
Choi
,
H.-J.
,
Austin
,
R.
,
Allen
,
J. K.
,
McDowell
,
D. L.
,
Mistree
,
F.
, and
Benson
,
D. J.
,
2005
, “
An Approach for Robust Design of Reactive Power Metal Mixtures Based on Non-Deterministic Micro-Scale Shock Simulation
,”
J. Comput.-Aided Mater. Des.
,
12
(
1
), pp.
57
85
. 10.1007/s10820-005-1056-1
36.
Choi
,
H.-J.
,
Austin
,
R.
,
Shepherd
,
J.
,
Allen
,
J. K.
,
McDowell
,
D.
,
Mistree
,
F.
, and
Benson
,
D.
, “
An Approach for Robust Micro-Scale Materials Design Under Unparameterizable Variability
,”
Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, p.
4331
.
37.
Choi
,
H.-J.
,
Mcdowell
,
D. L.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2008
, “
An Inductive Design Exploration Method for Hierarchical Systems Design Under Uncertainty
,”
Eng. Optim.
,
40
(
4
), pp.
287
307
. 10.1080/03052150701742201
38.
Nellippallil
,
A. B.
,
Song
,
K. N.
,
Goh
,
C.-H.
,
Zagade
,
P.
,
Gautham
,
B.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2017
, “
A Goal-Oriented, Sequential, Inverse Design Method for the Horizontal Integration of a Multistage Hot Rod Rolling System
,”
ASME J. Mech. Des.
,
139
(
3
), p.
031403
. 10.1115/1.4035555
39.
Choi
,
H.
,
McDowell
,
D. L.
,
Allen
,
J. K.
,
Rosen
,
D.
, and
Mistree
,
F.
,
2008
, “
An Inductive Design Exploration Method for Robust Multiscale Materials Design
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031402
. 10.1115/1.2829860
40.
Mistree
,
F.
,
Hughes
,
O. F.
, and
Bras
,
B.
,
1993
, “The Compromise Decision Support Problem and the Adaptive Linear Programming Algorithm,”
Structural Optimization: Status and Promise
,
M. P.
Kamat
, ed.,
AIAA
,
Washington, DC
.
41.
Mistree
,
F.
,
Patel
,
B.
, and
Vadde
,
S.
,
1994
, “
On Modeling Multiple Objectives and Multi-Level Decisions in Concurrent Design
,”
Adv. Des. Autom.
,
69
(
2
), pp.
151
161
.
42.
Rezapour
,
S.
,
Farahani
,
R. Z.
, and
Pourakbar
,
M.
,
2017
, “
Resilient Supply Chain Network Design Under Competition: A Case Study
,”
Eur. J. Oper. Res.
,
259
(
3
), pp.
1017
1035
. 10.1016/j.ejor.2016.11.041
43.
Seada
,
H.
, and
Deb
,
K.
,
2014
, “
U-NSGA-III: A Unified Evolutionary Algorithm for Single, Multiple, and Many-Objective Optimization,” COIN Report 2014022
.
44.
Messac
,
A.
, and
Mattson
,
C. A.
,
2002
, “
Generating Well-Distributed Sets of Pareto Points for Engineering Design Using Physical Programming
,”
Optim. Eng.
,
3
(
4
), pp.
431
450
. 10.1023/A:1021179727569
You do not currently have access to this content.