Abstract

Mobile networks, constructed with simple linkages by tessellation, have great application potential in engineering as they could change their shapes according to the need of working state by one degree-of-freedom (DOF). However, the existing one-DOF networks are always composed of bar-like links, and cooperated membranes should be designed and fabricated additionally, which makes the design and the realization more complicated. This paper is to construct a one-DOF network of Bennett linkages with identical square panels. Geometric conditions to construct the network are derived by investigating the kinematic compatibility, kinematics is carried out to show the relationships among all Bennett linkages, and the discussion on the design parameter shows the extensibility and the deploying performance, which is validated by two physical prototypes. This work initials the construction of mobile networks with identical polygon-like links, which will simplify the fabrication and realization of deployable structures.

References

1.
Sarrus
,
P. F.
,
1853
, “
Note sur la transformation des mouvements rectilignes alternatifs, en mouvements circulaires, et reciproquement
,”
Acad. Sci.
,
36
, pp.
1036
1038
.
2.
Bennett
,
G. T.
,
1903
, “
A new Mechanism
,”
Engineering
,
76
, pp.
777
778
.
3.
Bricard
,
R.
,
1927
,
Leçons de cinématique Tome II Cinématique appliquée
,
Gauthier-Villars
,
Paris
.
4.
Myard
,
F. E.
,
1931
, “
Contribution à la géométrie des systèmes articulés
,”
Bull. Soc. Math. France
,
59
, pp.
183
210
.
5.
Goldberg
,
M.
,
1943
, “
New Five-Bar and Six-Bar Linkages in Three Dimensions
,”
Trans. ASME
,
65
, pp.
649
663
.
6.
Waldron
,
K. J.
,
1967
, “
A Family of Overconstrained Linkages
,”
J. Mech.
,
2
(
2
), pp.
201
211
.
7.
Wohlhart
,
K.
,
1991
, “
Merging Two General Goldberg 5R Linkages to Obtain a New 6R Space Mechanism
,”
Mech. Mach. Theory
,
26
(
7
), pp.
659
668
.
8.
Baker
,
J. E.
,
1979
, “
The Bennett, Goldberg and Myard Linkages—In Perspective
,”
Mech. Mach. Theory
,
14
(
4
), pp.
239
253
.
9.
Eddie Baker
,
J.
,
2006
, “
Kinematic Investigation of the Deployable Bennett Loop
,”
ASME J. Mech. Desi.
,
129
(
6
), pp.
602
610
.
10.
Wei
,
G.
,
Ding
,
X.
, and
Dai
,
J. S.
,
2010
, “
Mobility and Geometric Analysis of the Hoberman Switch-Pitch Ball and Its Variant
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031010
.
11.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms with Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
.
12.
Zhang
,
K. T.
, and
Dai
,
J. S.
,
2015
, “
Screw-System-Variation Enabled Reconfiguration of the Bennett Plano-Spherical Hybrid Linkage and Its Evolved Parallel Mechanism
,”
ASME J. Mech. Des.
,
137
(
6
), p.
062303
.
13.
Kong
,
X.
,
2016
, “
Geometric Construction and Kinematic Analysis of a 6R Single-Loop Overconstrained Spatial Mechanism That has Three Pairs of Revolute Joints With Intersecting Joint Axes
,”
Mech. Mach. Theory
,
102
, pp.
196
202
.
14.
Chen
,
Y.
, and
You
,
Z.
,
2008
, “
An Extended Myard Linkage and its Derived 6R Linkage
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052301
.
15.
Chen
,
Y.
,
2003
, “
Design of Structural Mechanisms
,”
Doctor of Philosophy Dissertation
,
University of Oxford
,
London
.
16.
Chen
,
Y.
,
You
,
Z.
, and
Tarnai
,
T.
,
2005
, “
Threefold-Symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids Struct.
,
42
(
8
), pp.
2287
2301
.
17.
Chen
,
Y.
, and
You
,
Z.
,
2008
, “
On Mobile Assemblies of Bennett Linkages
,”
Proc. R. Soc. A
,
464
(
2093
), pp.
1275
1293
.
18.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2004
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
19.
Chen
,
Y.
, and
You
,
Z.
,
2006
, “
Square Deployable Frames for Space Applications. Part 1: Theory
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
220
(
G4
), pp.
347
354
.
20.
Chen
,
Y.
, and
You
,
Z.
,
2007
, “
Square Deployable Frames for Space Applications. Part 2: Realization
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
221
(
G1
), pp.
37
45
.
21.
Chen
,
Y.
, and
Baker
,
J. E.
,
2005
, “
Using a Bennett Linkage as a Connector Between Other Bennett Loops
,”
Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn.
,
219
(
2
), pp.
177
185
.
22.
Yang
,
F.
,
Li
,
J.
,
Chen
,
Y.
, and
You
,
Z.
,
2015
, “
A Deployable Bennett Network in Saddle Surface
,”
The 14th IFToMM World Congress
,
Taipei
,
Oct. 25–30
.
23.
Song
,
X.
,
Deng
,
Z.
,
Guo
,
H.
,
Liu
,
R.
,
Li
,
L.
, and
Liu
,
R.
,
2017
, “
Networking of Bennett Linkages and Its Application on Deployable Parabolic Cylindrical Antenna
,”
Mech. Mach. Theory
,
109
, pp.
95
125
.
24.
Lu
,
S.
,
Zlatanov
,
D.
, and
Ding
,
X.
,
2017
, “
Approximation of Cylindrical Surfaces With Deployable Bennett Networks
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021001
.
25.
Chen
Y
,
Peng
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
26.
Zhang
,
X.
, and
Chen
,
Y.
,
2018
, “
Mobile Assemblies of Bennett Linkages From Four-Crease Origami Patterns
,”
Proc. R. Soc. A
,
474
(
2210
), p.
20170621
.
27.
Zhang
,
X.
, and
Chen
,
Y.
,
2018
, “
The Diamond Thick-Panel Origami and the Corresponding Mobile Assemblies of Plane-Symmetric Bricard Linkages
,”
Mech. Mach. Theory
,
130
, pp.
585
604
.
28.
Lu
,
S.
,
Zlatanov
,
D.
,
Ding
,
X.
,
Zoppi
,
M.
, and
Guest
,
S. D.
,
2019
, “
A Network of Type III Bricard Linkages
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011013
.
29.
Yang
,
F.
,
You
,
Z.
, and
Chen
,
Y.
,
2020
, “
Mobile Assembly of Two Bennett Linkages and Its Application to Transformation Between Cuboctahedron and Octahedron
,”
Mech. Mach. Theory
,
145
, p.
103698
.
30.
Chen
,
Y.
,
Yang
,
F.
, and
You
,
Z.
,
2018
, “
Transformation of Polyhedrons
,”
Int. J. Solids Struct.
,
138
, pp.
193
204
.
31.
Yang
,
F.
, and
Chen
,
Y.
,
2018
, “
One-DOF Transformation Between Tetrahedron and Truncated Tetrahedron
,”
Mech. Mach. Theory
,
121
, pp.
169
183
.
32.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
A Spatial Eight-Bar Linkage and Its Association With the Deployable Platonic Mechanisms
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021010
.
33.
Wang
,
J.
, and
Kong
,
X.
,
2018
, “
Deployable Mechanisms Constructed by Connecting Orthogonal Bricard Linkages, 8R or 10R Single-Loop Linkages Using S Joints
,”
Mech. Mach. Theory
,
120
, pp.
178
191
.
34.
Wang
,
J.
, and
Kong
,
X.
,
2018
, “
Deployable Polyhedron Mechanisms Constructed by Connecting Spatial Single-Loop Linkages of Different Types and/or in Different Sizes Using S Joints
,”
Mech. Mach. Theory
,
124
, pp.
211
225
.
35.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
, pp.
215
221
.
36.
Yang
,
F.
,
Chen
,
Y.
,
Kang
,
R.
, and
Ma
,
J.
,
2016
, “
Truss Transformation Method to Obtain the Non-Overconstrained Forms of 3D Overconstrained Linkages
,”
Mech. Mach. Theory
,
102
, pp.
149
166
.
You do not currently have access to this content.