Abstract

We enhance the Bayesian optimization (BO) approach for simulation-based design of engineering systems consisting of multiple interconnected expensive simulation models. The goal is to find the global optimum design with minimal model evaluation costs. A commonly used approach is to treat the whole system as a single expensive model and apply an existing BO algorithm. This approach is inefficient due to the need to evaluate all the component models in each iteration. We propose a multi-model BO approach that dynamically and selectively evaluates one component model per iteration based on the uncertainty quantification of linked emulators (metamodels) and the knowledge gradient of system response as the acquisition function. Building on our basic formulation, we further solve problems with constraints and feedback couplings that often occur in real complex engineering design by penalizing the objective emulator and reformulating the original problem into a decoupled one. The superior efficiency of our approach is demonstrated through solving two analytical problems and the design optimization of a multidisciplinary electronic packaging system.

References

1.
Martins
,
J. R.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
.
2.
Tao
,
S.
,
Shintani
,
K.
,
Yang
,
G.
,
Meingast
,
H.
,
Apley
,
D. W.
, and
Chen
,
W. J. S.
,
2018
, “
Enhanced Collaborative Optimization Using Alternating Direction Method of Multipliers
,”
Struct. Multidiscipl. Optim.
,
58
(
4
), pp.
1571
1588
.
3.
Olson
,
G. B.
,
1997
, “
Computational Design of Hierarchically Structured Materials
,”
Science
,
277
(
5330
), pp.
1237
1242
.
4.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2013
, “
Objective-Oriented Sequential Sampling for Simulation Based Robust Design Considering Multiple Sources of Uncertainty
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051005
.
5.
Xiong
,
Y.
,
Chen
,
W.
, and
Tsui
,
K.-L.
,
2008
, “
A New Variable-Fidelity Optimization Framework Based on Model Fusion and Objective-Oriented Sequential Sampling
,”
ASME J. Mech. Des.
,
130
(
11
), p.
111401
.
6.
Sankararaman
,
S.
,
McLemore
,
K.
,
Mahadevan
,
S.
,
Bradford
,
S. C.
, and
Peterson
,
L. D.
,
2013
, “
Test Resource Allocation in Hierarchical Systems Using Bayesian Networks
,”
AIAA J.
,
51
(
3
), pp.
537
550
.
7.
Jiang
,
Z.
,
Chen
,
S.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2016
, “
Reduction of Epistemic Model Uncertainty in Simulation-Based Multidisciplinary Design
,”
ASME J. Mech. Des.
,
138
(
8
), p.
081403
.
8.
Shahriari
,
B.
,
Swersky
,
K.
,
Wang
,
Z.
,
Adams
,
R. P.
, and
De Freitas
,
N.
,
2016
, “
Taking the Human Out of the Loop: A Review of Bayesian Optimization
,”
Proc. IEEE
,
104
(
1
), pp.
148
175
.
9.
Frazier
,
P. I.
,
2018
, “Bayesian Optimization,”
Recent Advances in Optimization and Modeling of Contemporary Problems
,
D.
Shier
, ed.,
INFORMS (The Institute for Operations Research and the Management Sciences)
,
Catonsville, MD
, pp.
255
278
.
10.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
11.
Scott
,
W.
,
Frazier
,
P.
, and
Powell
,
W.
,
2011
, “
The Correlated Knowledge Gradient for Simulation Optimization of Continuous Parameters Using Gaussian Process Regression
,”
SIAM J. Optim.
,
21
(
3
), pp.
996
1026
.
12.
Wu
,
J.
, and
Frazier
,
P. I.
,
2016
, “
The Parallel Knowledge Gradient Method for Batch Bayesian Optimization
,”
Proceedings of the 30th International Conference on Neural Information Processing Systems
,
Barcelona, Spain
,
Dec. 5–10
,
Curran Associates Inc.
, pp.
3134
3142
.
13.
Močkus
,
J.
,
1975
,
On Bayesian Methods for Seeking the Extremum
,
Springer
,
Berlin, Heidelberg
.
14.
Kushner
,
H. J.
,
1964
, “
A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise
,”
ASME J. Basic Eng.
,
86
(
1
), pp.
97
106
.
15.
Srinivas
,
N.
,
Krause
,
A.
,
Kakade
,
S. M.
, and
Seeger
,
M.
,
2010
, “
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
,
Proceedings of the 27th International Conference on International Conference on Machine Learning
.
Haifa, Israel
,
June 21-24
, pp.
1015
1022
.
16.
Hennig
,
P.
, and
Schuler
,
C. J.
,
2012
, “
Entropy Search for Information-Efficient Global Optimization
,”
J. Mach. Learn. Res.
,
13
(
57
), pp.
1809
1837
.
17.
Hernández-Lobato
,
J. M.
,
Hoffman
,
M. W.
, and
Ghahramani
,
Z.
,
2014
, “Predictive Entropy Search for Efficient Global Optimization of Black-Box Functions,”
Proceedings of the 27th International Conference on Neural Information Processing Systems – Volume 1
,
Z.
Ghahramani
,
M.
Welling
,
C.
Cortes
,
N. D.
Lawrence
, and
K. Q.
Weinberger
, eds.,
Montréal, Canada
,
Dec. 8–13
,
MIT Press
,
Cambridge, MA
, pp.
918
926
.
18.
Schonlau
,
M.
,
Welch
,
W. J.
, and
Jones
,
D. R.
,
1998
, “Global Versus Local Search in Constrained Optimization of Computer Models,”
New Developments and Applications in Experimental Design
,
N.
Flournoy
,
W. F.
Rosenberger
, and
W. K.
Wong
, eds.,
Institute of Mathematical Statistics
,
Hayward, CA
, pp.
11
25
.
19.
Gardner
,
J.
,
Kusner
,
M.
,
Xu
,
Z.
,
Weinberger
,
K.
, and
Cunningham
,
J.
,
2014
, “
Bayesian Optimization With Inequality Constraints
,”
Proceedings of the 31st International Conference on Machine Learning
,
P. X.
Eric
and
J.
Tony
, eds., PMLR: Proceedings of Machine Learning Research,
Association for Computing Machinery
,
New York
, pp.
937
945
.
20.
Gramacy
,
R. B.
,
Gray
,
G. A.
,
Le Digabel
,
S.
,
Lee
,
H. K. H.
,
Ranjan
,
P.
,
Wells
,
G.
, and
Wild
,
S. M.
,
2016
, “
Modeling an Augmented Lagrangian for Blackbox Constrained Optimization
,”
Technometrics
,
58
(
1
), pp.
1
11
.
21.
Letham
,
B.
,
Karrer
,
B.
,
Ottoni
,
G.
, and
Bakshy
,
E.
,
2019
, “
Constrained Bayesian Optimization With Noisy Experiments
,”
Bayesian Anal.
,
14
(
2
), pp.
495
519
.
22.
Picheny
,
V.
,
2014
, “
A Stepwise Uncertainty Reduction Approach to Constrained Global Optimization
,”
Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics
,
K.
Samuel
and
C.
Jukka
, eds., PMLR: Proceedings of Machine Learning Research,
Reykjavik, Iceland
,
Apr. 22–25
, pp.
787
795
.
23.
Gelbart
,
M. A.
,
Snoek
,
J.
, and
Adams
,
R. P.
,
2014
, “
Bayesian Optimization With Unknown Constraints
,”
Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence
,
Quebec City, PQ, Canada
,
July 23–27
,
AUAI Press
, pp.
250
259
.
24.
Ghoreishi
,
S. F.
, and
Allaire
,
D. L.
,
2018
, “
A Fusion-Based Multi-Information Source Optimization Approach Using Knowledge Gradient Policies
,”
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
,
Jan. 8–12
, pp.
3
7
.
25.
Astudillo
,
R.
, and
Frazier
,
P.
,
2019
, “
Bayesian Optimization of Composite Functions
,”
Proceedings of the 36th International Conference on Machine Learning
,
C.
Kamalika
and
S.
Ruslan
, eds.,
Long Beach, CA
,
June 10–15
, pp.
354
363
.
26.
Ghoreishi
,
S. F.
, and
Imani
,
M.
,
2020
, “
Bayesian Optimization for Efficient Design of Uncertain Coupled Multidisciplinary Systems
,”
Proceedings of the 2020 American Control Conference (ACC 2020)
,
Denver, CO
,
July 1–3
,
IEEE
, pp.
2
4
.
27.
Kyzyurova
,
K. N.
,
Berger
,
J. O.
, and
Wolpert
,
R. L.
,
2018
, “
Coupling Computer Models Through Linking Their Statistical Emulators
,”
SIAM/ASA J. Uncertainty Quantif.
,
6
(
3
), pp.
1151
1171
.
28.
Wolpert
,
D. H.
,
1996
, “
The Lack of a Priori Distinctions Between Learning Algorithms
,”
Neural Comput.
,
8
(
7
), pp.
1341
1390
.
29.
Liang
,
C.
, and
Mahadevan
,
S.
,
2016
, “
Multidisciplinary Optimization Under Uncertainty Using Bayesian Network
,”
SAE Int. J. Mater. Manuf.
,
9
(
2
), pp.
419
429
.
30.
Gelbart
,
M. A.
,
2015
, “
Constrained Bayesian Optimization and Applications
,”
Doctoral dissertation
,
Harvard University, Graduate School of Arts & Sciences
.
31.
Hernandez-Lobato
,
J. M.
,
Gelbart
,
M.
,
Hoffman
,
M.
,
Adams
,
R.
, and
Ghahramani
,
Z.
,
2015
, “
Predictive Entropy Search for Bayesian Optimization With Unknown Constraints
,”
Proceedings of the 32nd International Conference on Machine Learning
,
B.
Francis
and
B.
David
, eds.,
Lille, France
,
July 6–11
, pp.
1699
1707
.
32.
Tao
,
S.
,
Shintani
,
K.
,
Bostanabad
,
R.
,
Chan
,
Y.-C.
,
Yang
,
G.
,
Meingast
,
H.
, and
Chen
,
W.
,
2017
, “
Enhanced Gaussian Process Metamodeling and Collaborative Optimization for Vehicle Suspension Design Optimization
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, pp.
2
3
.
33.
van Beek
,
A.
,
Tao
,
S.
, and
Chen
,
W.
,
2019
, “
Global Emulation Through Normative Decision Making and Thrifty Adaptive Batch Sampling
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, pp.
2
3
.
34.
Williams
,
C. K.
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Boca Raton, FL
, p.
4
.
35.
Girard
,
A.
, and
Murray-Smith
,
R.
,
2005
, “
Gaussian Processes: Prediction at a Noisy Input and Application to Iterative Multiple-Step Ahead Forecasting of Time-Series
,”
Switching and Learning in Feedback Systems: European Summer School on Multi-Agent Control
,
Maynooth, Ireland
,
Sept. 8–10
, Revised Lectures and Selected Papers,
R.
Murray-Smith
and
R.
Shorten
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
158
184
.
36.
Lee
,
S. H.
, and
Chen
,
W.
,
2008
, “
A Comparative Study of Uncertainty Propagation Methods for Black-Box-Type Problems
,”
Struct. Multidiscipl. Optim.
,
37
(
3
), p.
239
253
.
37.
Jiang
,
Z.
,
Li
,
W.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2015
, “
A Spatial-Random-Process Based Multidisciplinary System Uncertainty Propagation Approach With Model Uncertainty
,”
ASME J. Mech. Des.
,
137
(
10
), p.
101402
.
38.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2005
, “
An Efficient Algorithm for Constructing Optimal Design of Computer Experiments
,”
J. Stat. Plan. Inference
,
134
(
1
), pp.
268
287
.
39.
Sobol
,
I. M.
,
1967
, “
On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals
,”
USSR Comput. Math. Math. Phys.
,
7
(
4
), pp.
86
112
.
40.
Frazier
,
P.
,
Powell
,
W.
, and
Dayanik
,
S.
,
2009
, “
The Knowledge-Gradient Policy for Correlated Normal Beliefs
,”
Informs J. Comput.
,
21
(
4
), pp.
599
613
.
41.
Sellar
,
R.
,
Batill
,
S.
, and
Renaud
,
J.
,
1996
, “
Response Surface Based, Concurrent Subspace Optimization for Multidisciplinary System Design
,”
34th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 15–18
.
42.
Renaud
,
G.
, and
Shi
,
G.
,
2002
, “
Evaluation and Implementation of Multidisciplinary Design Optimization Strategies
,”
Congress of the International Council of the Aeronautical Sciences (ICAS)
,
Toronto, Canada
,
Sept. 8–13
, pp.
1
10
.
43.
Chen
,
S.
,
Zhang
,
F.
, and
Khalid
,
M.
,
2002
, “
Evaluation of Three Decomposition MDO Algorithms
,”
Proceedings of 23rd International Congress of Aerospace Sciences
,
Toronto, Canada
,
Sept. 8–13
, pp.
113.3
113.4
.
44.
Roth
,
B.
, and
Kroo
,
I.
,
2008
, “
Enhanced Collaborative Optimization: Application to an Analytic Test Problem and Aircraft Design
,”
12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Victoria, British Columbia, Canada
,
Sept. 10–12
, pp.
7
8
.
45.
Salas
,
A.O.
,
1995
, “
MDO Test Suite
,” https://www.aere.iastate.edu/bloebaum/ii-b-3-electronic-packaging-problem/, Accessed April 10, 2021.
46.
Du
,
X.
, and
Chen
,
W.
, “
An Efficient Approach to Probabilistic Uncertainty Analysis in Simulation-Based Multidisciplinary Design
,”
38th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 10–13
, pp.
8
9
.
47.
Du
,
X.
, and
Chen
,
W.
,
2002
, “
Efficient Uncertainty Analysis Methods for Multidisciplinary Robust Design
,”
AIAA J.
,
40
(
3
), pp.
545
552
.
48.
Kodiyalam
,
S.
, and
Sobieszczanski-Sobieski
,
J.
,
2001
, “
Multidisciplinary Design Optimisation—Some Formal Methods, Framework Requirements, and Application to Vehicle Design
,”
Int. J. Veh. Des.
,
25
(
1–2
), pp.
3
22
.
49.
Picheny
,
V.
,
Ginsbourger
,
D.
,
Roustant
,
O.
,
Haftka
,
R. T.
, and
Kim
,
N.-H.
,
2010
, “
Adaptive Designs of Experiments for Accurate Approximation of a Target Region
,”
ASME J. Mech. Des.
,
132
(
7
), p.
071008
.
You do not currently have access to this content.