Abstract

In many origami-based applications, a device needs to be maintained in one or more fold states. The origami stability integration method (OSIM) presented in this paper provides an approach for graphically combining various techniques to achieve stability. Existing stability techniques are also categorized into four groups based on whether they are intrinsic or extrinsic to the origami pattern and whether they exhibit gradual or non-gradual energy storage behaviors. These categorizations can help designers select appropriate techniques for their application. The paper also contains design considerations and resources for achieving stability. Finally, two case studies are presented which use the OSIM and the technique categorization to conceptualize stability in origami-based devices.

References

References
1.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
. 10.1126/science.1252610
2.
Bircan
,
B.
,
Miskin
,
M.
,
Dorsey
,
K.
,
McEuen
,
P.
, and
Cohen
,
I.
,
2018
, “
Bidirectional Folding With Nanoscale Sheets for Autonomous Micro-Origami
,”
Bull. Am. Phys. Soc
.
3.
Saito
,
K.
,
Pellegrino
,
S.
, and
Nojima
,
T.
,
2014
, “
Manufacture of Arbitrary Cross-Section Composite Honeycomb Cores Based on Origami Techniques
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051011
. 10.1115/1.4026824
4.
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2017
, “
Realizing Origami Mechanisms From Metal Sheets
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, American Society of Mechanical Engineers, p. V05BT08A055.
5.
Tachi
,
T.
,
2011
, “
Rigid-Foldable Thick Origami
,”
Origami
,
5
(
5
), pp.
253
264
.
6.
Lang
,
R. J.
,
Magleby
,
S.
, and
Howell
,
L.
,
2016
, “
Single Degree-of-Freedom Rigidly Foldable Cut Origami Flashers
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031005
. 10.1115/1.4032102
7.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
. 10.1126/science.aab2870
8.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
. 10.1115/1.4025821
9.
DeFigueiredo
,
B. P.
,
Pehrson
,
N. A.
,
Tolman
,
K. A.
,
Crampton
,
E.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2019
, “
Origami-Based Design of Conceal-and-Reveal Systems
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020904
. 10.1115/1.4042427
10.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich Tini Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A
,
419
(
1
), pp.
131
137
. 10.1016/j.msea.2005.12.016
11.
Thrall
,
A.
, and
Quaglia
,
C.
,
2014
, “
Accordion Shelters: A Historical Review of Origami-Like Deployable Shelters Developed by the US Military
,”
Eng. Struct.
,
59
, pp.
686
692
. 10.1016/j.engstruct.2013.11.009
12.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
. 10.1115/1.4025372
13.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Lang
,
R. J.
,
2013
, “
A Classification of Action Origami as Systems of Spherical Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111008
. 10.1115/1.4025379
14.
Wiener
,
M. R.
,
2016
, “
A Foundation for Analysis of Spherical System Linkages Inspired by Origami and Kinematic Paper Art
”.
Theses and Dissertations
, https://preserve.lehigh.edu/etd/2875.
15.
Zhang
,
H.
,
Zhu
,
B.
, and
Zhang
,
X.
,
2018
, “
Origami Kaleidocycle-Inspired Symmetric Multistable Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
11
(
1
).
16.
Butler
,
J.
,
Bowen
,
L.
,
Wilcox
,
E.
,
Shrager
,
A.
,
Frecker
,
M. I.
,
von Lockette
,
P.
,
Simpson
,
T. W.
,
Lang
,
R. J.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2018
, “
A Model for Multi-Input Mechanical Advantage in Origami-Based Mechanisms
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061007
. 10.1115/1.4041199
17.
Ku
,
J. S.
, and
Demaine
,
E. D.
,
2016
, “
Rigid Folding Analysis of Offset Crease Thick Folding
,”
Proceedings of IASS Annual Symposia
,
Tokyo, Japan
,
Sept. 26–30
, pp.
1
8
.
18.
Alfattani
,
R.
, and
Lusk
,
C.
,
2018
, “
A Lamina-Emergent Frustum Using a Bistable Collapsible Compliant Mechanism
,”
ASME J. Mech. Des.
,
140
(
12
), p.
125001
. 10.1115/1.4037621
19.
Jensen
,
B.
,
Howell
,
L.
, and
Salmon
,
L.
,
1999
, “
Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
416
423
. 10.1115/1.2829477
20.
Waitukaitis
,
S.
,
Menaut
,
R.
,
Chen
,
B. G.-G.
, and
van Hecke
,
M.
,
2015
, “
Origami Multistability: From Single Vertices to Metasheets
,”
Phys. Rev. Lett.
,
114
(
5
), p.
055503
. 10.1103/PhysRevLett.114.055503
21.
Yasuda
,
H.
,
Chen
,
Z.
, and
Yang
,
J.
,
2016
, “
Multitransformable Leaf-Out Origami With Bistable Behavior
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031013
. 10.1115/1.4031809
22.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), p.
094009
. 10.1088/0964-1726/23/9/094009
23.
Shemenski
,
P. D.
, and
Trease
,
B. P.
,
2018
, “
Compact Directional and Frictional Hinges for Flat Folding Applications
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
,
Aug. 26–29
, American Society of Mechanical Engineers, p. V05BT07A064.
24.
Yan
,
Z.
,
Zhang
,
F.
,
Wang
,
J.
,
Liu
,
F.
,
Guo
,
X.
,
Nan
,
K.
,
Lin
,
Q.
,
Gao
,
M.
,
Xiao
,
D.
, and
Shi
,
Y.
,
2016
, “
Controlled Mechanical Buckling for Origami-Inspired Construction of 3d Microstructures in Advanced Materials
,”
Adv. Funct. Mater.
,
26
(
16
), pp.
2629
2639
. 10.1002/adfm.201504901
25.
Jacobsen
,
J. O.
,
Chen
,
G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2009
, “
Lamina Emergent Torsional (Let) Joint
,”
Mech. Mach. Theory
,
44
(
11
), pp.
2098
2109
. 10.1016/j.mechmachtheory.2009.05.015
26.
Saito
,
K.
,
Tsukahara
,
A.
, and
Okabe
,
Y.
,
2015
, “
New Deployable Structures Based on an Elastic Origami Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021402
. 10.1115/1.4029228
27.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
. 10.1126/science.1252876
28.
Na
,
J.-H.
,
Evans
,
A. A.
,
Bae
,
J.
,
Chiappelli
,
M. C.
,
Santangelo
,
C. D.
,
Lang
,
R. J.
,
Hull
,
T. C.
, and
Hayward
,
R. C.
,
2015
, “
Programming Reversibly Self-Folding Origami With Micropatterned Photo-Crosslinkable Polymer Trilayers
,”
Adv. Mater.
,
27
(
1
), pp.
79
85
. 10.1002/adma.201403510
29.
Hayes
,
G. J.
,
Liu
,
Y.
,
Genzer
,
J.
,
Lazzi
,
G.
, and
Dickey
,
M. D.
,
2014
, “
Self-Folding Origami Microstrip Antennas
,”
IEEE Trans. Antennas Propag.
,
62
(
10
), pp.
5416
5419
. 10.1109/TAP.2014.2346188
30.
Peraza-Hernandez
,
E. A.
,
Hartl
,
D. J.
,
Malak Jr
,
R. J.
, and
Lagoudas
,
D. C.
,
2014
, “
Origami-Inspired Active Structures: A Synthesis and Review
,”
Smart Mater. Struct.
,
23
(
9
), p.
094001
. 10.1088/0964-1726/23/9/094001
31.
Ning
,
X.
,
Wang
,
X.
,
Zhang
,
Y.
,
Yu
,
X.
,
Choi
,
D.
,
Zheng
,
N.
,
Kim
,
D. S.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2018
, “
Assembly of Advanced Materials Into 3d Functional Structures by Methods Inspired by Origami and Kirigami: A Review
,”
Adv. Mater. Interfaces
,
5
(
13
), p.
1800284
. 10.1002/admi.201800284
32.
Li
,
S.
, and
Wang
,
K.
,
2015
, “
Fluidic Origami With Embedded Pressure Dependent Multi-Stability: A Plant Inspired Innovation
,”
J. R. Soc. Interface
,
12
(
111
), p.
20150639
. 10.1098/rsif.2015.0639
33.
Pehrson
,
N. A.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
An Origami-Based Thickness-Accommodating Bistable Mechanism in Monolithic Thick-Sheet Materials
,”
2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, The Netherlands
,
June 20–22
,
IEEE
, pp.
1
7
.
34.
Pagano
,
A.
,
Yan
,
T.
,
Chien
,
B.
,
Wissa
,
A.
, and
Tawfick
,
S.
,
2017
, “
A Crawling Robot Driven by Multi-Stable Origami
,”
Smart Mater. Struct.
,
26
(
9
), p.
094007
. 10.1088/1361-665X/aa721e
35.
Yasuda
,
H.
, and
Yang
,
J.
,
2015
, “
Reentrant Origami-Based Metamaterials With Negative Poisson’s Ratio and Bistability
,”
Phys. Rev. Lett.
,
114
(
18
), p.
185502
. 10.1103/PhysRevLett.114.185502
36.
Deng
,
D.
, and
Chen
,
Y.
,
2015
, “
Origami-Based Self-Folding Structure Design and Fabrication Using Projection Based Stereolithography
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021701
. 10.1115/1.4029066
37.
Cafarelli
,
M.
,
Motta
,
M.
, and
Storto
,
M.
,
2013
,
Origami: Evoluzione e Ispirazione
,
ISSUU
.
38.
Morris
,
E.
,
McAdams
,
D. A.
, and
Malak
,
R.
,
2016
, “
The State of the Art of Origami-Inspired Products: A Review
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, American Society of Mechanical Engineers, p. V05BT07A014.
39.
Morgan
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
An Approach to Designing Origami-Adapted Aerospace Mechanisms
,”
ASME J. Mech. Des.
,
138
(
5
), p.
052301
. 10.1115/1.4032973
40.
Hernandez
,
E. A. P.
,
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2019
,
Active Origami: Modeling, Design, and Applications
,
Springer
,
New York
, pp.
1
53
.
41.
Gillman
,
A. S.
,
Fuchi
,
K.
, and
Buskohl
,
P. R.
,
2019
, “
Discovering Sequenced Origami Folding Through Nonlinear Mechanics and Topology Optimization
,”
ASME J. Mech. Des.
,
141
(
4
), p.
041401
. 10.1115/1.4041782
42.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Bazzan
,
G.
,
Durstock
,
M. F.
,
Reich
,
G. W.
,
Vaia
,
R. A.
, and
Joo
,
J. J.
,
2015
, “
Origami Actuator Design and Networking Through Crease Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
9
), p.
091401
. 10.1115/1.4030876
43.
Lang
,
R. J.
,
2011
,
Origami Design Secrets: Mathematical Methods for an Ancient Art
,
AK Peters/CRC Press
,
New York
.
44.
Avila
,
A.
,
Magleby
,
S. P.
, and
Lang
,
R. J.
,
2019
, “
Origami Fold States: Concept and Design Tool
,”
Mech. Sci.
,
10
(
1
), pp.
91
105
. 10.5194/ms-10-91-2019
45.
Zou
,
C.
, and
Harne
,
R. L.
,
2017
, “
Adaptive Acoustic Energy Delivery to Near and Far Fields Using Foldable, Tessellated Star Transducers
,”
Smart Mater. Struct.
,
26
(
5
), p.
055021
. 10.1088/1361-665X/aa6a93
46.
Plastics Inc.
:
Origami Colander, Kernel Description
, https://www.brplastics.com/folding-colanders.html, Accessed Feb. 28, 2020.
47.
Foschi
,
R.
, and
Tachi
,
T.
,
2018
, “
Designing Self-Blocking Systems With Non-Flat-Foldable Degree-4 Vertices
,”
Origami 7: The Proceedings From the 7th International Meeting on Origami in Science, Mathematics, and Education
,
Oxford, UK
,
Sept. 4–7
, pp.
795
809
.
48.
Bern
,
M.
, and
Hayes
,
B.
,
1996
, “
The Complexity of Flat Origami
,”
SODA
,
96
, pp.
175
183
.
49.
Guang
,
C.
, and
Yang
,
Y.
,
2018
, “
An Approach to Designing Deployable Mechanisms Based on Rigid Modified Origami Flashers
,”
ASME J. Mech. Des.
,
140
(
8
), p.
082301
. 10.1115/1.4040178
50.
Silverberg
,
J. L.
,
Na
,
J.-H.
,
Evans
,
A. A.
,
Liu
,
B.
,
Hull
,
T. C.
,
Santangelo
,
C. D.
,
Lang
,
R. J.
,
Hayward
,
R. C.
, and
Cohen
,
I.
,
2015
, “
Origami Structures With a Critical Transition to Bistability Arising From Hidden Degrees of Freedom
,”
Nat. Mater.
,
14
(
4
), pp.
389
393
. 10.1038/nmat4232
51.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
John Wiley & Sons
,
Hoboken, NJ
.
52.
Greenberg
,
H.
,
Gong
,
M. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2011
, “
Identifying Links Between Origami and Compliant Mechanisms
,”
Mech. Sci.
,
2
(
2
), pp.
217
225
. 10.5194/ms-2-217-2011
53.
Chen
,
G.
,
Gou
,
Y.
, and
Zhang
,
A.
,
2011
, “
Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Mechanism
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081007
. 10.1115/1.4004543
54.
Oh
,
Y. S.
, and
Kota
,
S.
,
2009
, “
Synthesis of Multistable Equilibrium Compliant Mechanisms Using Combinations of Bistable Mechanisms
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021002
. 10.1115/1.3013316
55.
Francis
,
K.
,
Blanch
,
J.
,
Magleby
,
S.
, and
Howell
,
L.
,
2013
, “
Origami-Like Creases in Sheet Materials for Compliant Mechanism Design
,”
Mech. Sci.
,
4
(
2
), pp.
371
380
. 10.5194/ms-4-371-2013
56.
Safsten
,
C.
,
Fillmore
,
T.
,
Logan
,
A.
,
Halverson
,
D.
, and
Howell
,
L.
,
2016
, “
Analyzing the Stability Properties of Kaleidocycles
,”
ASME J. Appl. Mech.
,
83
(
5
), p.
051001
. 10.1115/1.4032572
57.
Fozzils: Fozzils Ultralight Backpacking Bowl Kernel Description
, https://www.fozzils.com/, Accessed Feb. 28, 2020.
58.
Parker
,
W.
:
Warby Parker Glasses Case, Kernel Description
, https://i.warbycdn.com/s/f/97582daa7f3b79eb0f42d698b1dafa893dea1517?width=1200&quality=80, Accessed Feb 28. 2020.
59.
Rogers
,
J.
,
Huang
,
Y.
,
Schmidt
,
O. G.
, and
Gracias
,
D. H.
,
2016
, “
Origami Mems and Nems
,”
MRS Bull.
,
41
(
2
), pp.
123
129
. 10.1557/mrs.2016.2
60.
Mu
,
J.
,
Hou
,
C.
,
Wang
,
H.
,
Li
,
Y.
,
Zhang
,
Q.
, and
Zhu
,
M.
,
2015
, “
Origami-Inspired Active Graphene-Based Paper for Programmable Instant Self-Folding Walking Devices
,”
Sci. Adv.
,
1
(
10
), p.
e1500533
. 10.1126/sciadv.1500533
61.
Huffman
,
D. A.
,
1976
, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
C-25
(
10
), pp.
1010
1019
. 10.1109/TC.1976.1674542
62.
Ku
,
J. S.
,
2017
, “
Folding Thick Materials Using Axially Varying Volume Trimming
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, American Society of Mechanical Engineers, p. V05BT08A044.
63.
Morgan
,
D. C.
,
Halverson
,
D. M.
,
Magleby
,
S. P.
,
Bateman
,
T. C.
, and
Howell
,
L. L.
,
2017
,
Y Origami?: Explorations in Folding
, Vol.
104
,
American Mathematical Society
,
Providence, RI
.
64.
Brownell
,
B. E.
,
2006
,
Transmaterial: A Catalog of Materials, Products and Processes That Are Redefining Our Physical Environment
,
Princeton Architectural Press
,
New York, NY
.
65.
Ihnatko
,
A.
,
2013
, “
Kindle Fire HDX 7-Inch Review: Third Time’s the Charm
,” https://www.pcworld.com/article/2051202/kindle-fire-hdx-7-inch-review-third-times-the-charm.html, Accessed May 16, 2018.
66.
Diebel
,
Markus
, et al
,
2016
, “
Case for Electronic Tablet
,”, U.S. Patent No. 9,226,559.
67.
Moore
,
S.
,
2012
, “
Tablet Cases Kernel Description
,” https://www.trendhunter.com/trends/moshi-iglaze-with-versacover, Accessed May 16, 2018.
68.
Edmondson
,
B. J.
,
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Bateman
,
T. C.
,
2013
, “
Oriceps: Origami-Inspired Forceps
,”
ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
,
Portland, OR
,
Aug. 4–7
, American Society of Mechanical Engineers, p. V001T01A027.
69.
Bachrach
,
J.
,
2015
, “
Computational Design + Fabrication: 2D Design
http://inst.eecs.berkeley.edu/~cs194-28/fa15/lectures/2d-design.pdf
70.
Staff
,
D.
,
2010
,
Origami Style: Paper-Thin, Patio-Ready White Folding Chairs
, https://dornob.com/origami-style-paper-thin-patio-ready-white-folding-chairs/?ref=search, Accessed Feb. 28, 2018.
71.
Wang
,
C.
,
Li
,
J.
, and
You
,
Z.
,
2018
, “
A Kirigami-Inspired Foldable Model for Thick Panels
,”
Origami 7: The Proceedings From the 7th International Meeting on Origami in Science, Mathematics, and Education
,
Oxford, UK
,
Sept. 4–7
, pp.
715
730
.
72.
Lang
,
R. J.
,
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
A Review of Thickness-Accommodation Techniques in Origami-Inspired Engineering
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010805
. 10.1115/1.4039314
73.
Hussey
,
M.
,
2014
, “
Origami Sofa by Yumi Yoshida Unfolds to Become a Floor Mat
,” https://www.dezeen.com/2014/03/09/folding-sofa-uses-origami-to-transform-from-rug-to-two-seater/, Accessed May 16, 2018.
74.
Cynthia
,
M.
,
2017
, “
Bear Bowl: The Origami Camping Cooker That Fits in Your Pocket
,” https://supplier.community/bear-bowl-the-origami-camping-cooker-that-fits-in-your-pocket/, Accessed May 16, 2018.
75.
Sargent
,
B.
,
Butler
,
J.
,
Seymour
,
K.
,
Bailey
,
D.
,
Jensen
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
,
2019
, “
An Origami-Based Medical Support System to Mitigate Flexible Shaft Buckling
,”
J. Mech. Rob.
, pp.
1
16
. https://doi.org/10.1115/1.4041586
76.
Bailey
,
D. W.
,
Butler
,
J. J.
,
Howell
,
L. L.
,
Jensen
,
B. D.
,
Magleby
,
S. P.
,
Sargent
,
B. S.
, and
Seymour
,
K. H.
,
2019
, “
Deployable Bellows for Delivery of a Flexible, Elongate Device and Methods of Use
,” Sept. 5, U.S. Patent No. 16/291,398.
77.
Jianguo
,
C.
,
Xiaowei
,
D.
,
Ya
,
Z.
,
Jian
,
F.
, and
Yongming
,
T.
,
2015
, “
Bistable Behavior of the Cylindrical Origami Structure With Kresling Pattern
,”
ASME J. Mech. Des.
,
137
(
6
), p.
061406
. 10.1115/1.4030158
78.
Seymour
,
K.
,
Burrow
,
D.
,
Avila
,
A.
,
Bateman
,
T.
,
Morgan
,
D. C.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
Origami-Based Deployable Ballistic Barrier
,”
Origami 7: The Proceedings From the 7th International Meeting on Origami in Science, Mathematics, and Education
,
Oxford, UK
,
Sept. 4–7
, Vol.
3
,
Tarquin
, pp.
763
777
.
You do not currently have access to this content.