Abstract

Due to the benefits associated with additive manufacturing (AM), there are increasingly more opportunities to leverage AM to enable the fabrication of components that were previously made using conventional techniques such as subtractive manufacturing or casting. To support this transition, it is critical to be able to rigorously evaluate the technical and economic feasibility of additively manufacturing an existing component design. In order to support this evaluation, this paper presents a novel feasibility analysis that performs a multi-criteria assessment of AM readiness. Along with the development of these assessments, we also present a novel scoring approach for qualitatively and quantitatively evaluating the feasibility of each component assessment. This scoring approach, which leverages preference models from physical programing, introduces a flexible set of feasibility levels to assess the manufacturability capabilities of AM technologies. It also allows for the integration of a designer’s preferences toward the AM assessments, supporting the decision whether to utilize AM technologies or not. The presented feasibility analysis allows for both technical and economic benefits since it suggests only using AM for those products whose feasibility results are within suitable ranges. The details of the approach are illustrated using four sample parts with varying geometries. Experimental validation is also performed to demonstrate the robustness of the evaluation. Results obtained show the capability and generalizability of these approaches to analyze intricate geometries and provide useful decision support in AM feasibility analysis.

References

1.
Meisel
,
N. A.
,
Woods
,
M. R.
,
Simpson
,
T. W.
, and
Dickman
,
C. J.
,
2017
, “
Redesigning a Reaction Control Thruster for Metal-Based Additive Manufacturing: A Case Study in Design for Additive Manufacturing
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100903
. 10.1115/1.4037250
2.
Tedia
,
S.
, and
Williams
,
C. B.
,
2016
, “
Manufacturability Analysis Tool for Additive Manufacturing Using Voxel-Based Geometric Modeling
,”
27th Annual International Solid Freeform Fabrication (SFF) Symposium
,
Austin, TX, Aug.
, pp.
3
22
.
3.
Adam
,
G. A.
, and
Zimmer
,
D.
,
2014
, “
Design for Additive Manufacturing—Element Transitions and Aggregated Structures
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
20
28
. 10.1016/j.cirpj.2013.10.001
4.
Lopez
,
F.
,
Witherell
,
P.
, and
Lane
,
B.
,
2016
, “
Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models
,”
ASME J. Mech. Des.
,
138
(
11
), p.
114502
. 10.1115/1.4034103
5.
Markforged
, “
Troubleshooting Common Print Issues
,” https://support.markforged.com/hc/en-us/articles/115000182410-Troubleshooting-Common-Print-Issues, Accessed July 26, 2019.
6.
Prusaprinters Blog
, “
How to Fix the Most Common 3D Printing Errors
,” https://blog.prusaprinters.org/how-to-fix-the-most-common-3d-printing-errors/, Accessed July 26, 2019.
7.
Rigid.Ink
, “
Poor Surface Quality Above Supports
,” https://rigid.ink/pages/ultimate-troubleshooting-guide, Accessed July 26, 2019.
8.
Openelectronics
, “
New ORNL Study: A Full Overview of Metal 3D Printing Technologies and Their Bright Future
,” https://www.open-electronics.org/new-ornl-study-a-full-overview-of-metal-3d-printing-technologies-and-their-bright-future/, Accessed July 26, 2019.
9.
Ghiasian
,
S. E.
,
Jaiswal
,
P.
,
Rai
,
R.
, and
Lewis
,
K.
,
2019
, “
A Design Modification System for Additive Manufacturing: Towards Feasible Geometry Development
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
,
Anaheim, CA
,
DETC2019-97840
.
10.
Parks
,
T. K.
,
Kaplan
,
B. J.
,
Pokorny
,
L. R.
,
Simpson
,
T. W.
, and
Williams
,
C. B.
,
2016
, “
Additive Manufacturing: Which DLA-Managed Legacy Parts Are Potential AM Candidates
,”
LMI, Tysons, VA
,
LMI-DL501T1
.
11.
Doubrovski
,
Z.
,
Verlinden
,
J. C.
, and
Geraedts
,
J. M.
,
2011
, “
Optimal Design for Additive Manufacturing: Opportunities and Challenges
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
,
Washington, DC
,
DETC2011-48131
.
12.
Yang
,
S.
, and
Zhao
,
Y.
,
2015
, “
Additive Manufacturing-Enabled Design Theory and Methodology: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1–4
), pp.
327
342
. 10.1007/s00170-015-6994-5
13.
Tang
,
Y.
,
Tang
,
Y.
,
Zhao
,
Y. F.
, and
Zhao
,
Y. F.
,
2016
, “
A Survey of the Design Methods for Additive Manufacturing to Improve Functional Performance
,”
Rapid Prototyp. J.
,
22
(
3
), pp.
569
590
. 10.1108/RPJ-01-2015-0011
14.
Bikas
,
H.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2016
, “
Additive Manufacturing Methods and Modelling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1–4
), pp.
389
405
. 10.1007/s00170-015-7576-2
15.
Barnard
,
L.
,
2008
, “
Designing for Laser Sintering
,”
J. New Gen. Sci.
,
6
(
2
), pp.
47
59
.
16.
Seepersad
,
C. C.
,
Govett
,
T.
,
Kim
,
K.
,
Lundin
,
M.
, and
Pinero
,
D.
,
2012
, “
A Designer’s Guide for Dimensioning and Tolerancing SLS Parts
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug.
, pp.
921
931
.
17.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “
(Re) Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
. 10.1115/1.4031156
18.
Kranz
,
J.
,
Herzog
,
D.
, and
Emmelmann
,
C.
,
2015
, “
Design Guidelines for Laser Additive Manufacturing of Lightweight Structures in Tial6v4
,”
J. Laser Appl.
,
27
(
S1
), p.
S14001
. 10.2351/1.4885235
19.
Mokhtarian
,
H.
,
Coatanéa
,
E.
,
Paris
,
H.
,
Mbow
,
M. M.
,
Pourroy
,
F.
,
Marin
,
R. R.
,
Vihinen
,
J.
, and
Ellman
,
A. A.
,
2018
, “
A Conceptual Design and Modeling Framework for Integrated Additive Manufacturing
,”
ASME J. Mech. Des.
,
140
(
8
), p.
081101
. 10.1115/1.4040163
20.
Booth
,
J. W.
,
Alperovich
,
J.
,
Chawla
,
P.
,
Ma
,
J.
,
Reid
,
T. N.
, and
Ramani
,
K.
,
2017
, “
The Design for Additive Manufacturing Worksheet
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100904
. 10.1115/1.4037251
21.
Prabhu
,
R.
,
Miller
,
S.
,
Simpson
,
T. W.
, and
Meisel
,
N.
,
2019
, “
But Will It Print? Assessing Student Use of Design for Additive Manufacturing and Exploring Its Effect on Design Performance and Manufacturability
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
,
Anaheim, CA
,
DETC2019-97478
.
22.
Lauff
,
C. A.
,
Perez
,
K. B.
,
Camburn
,
B. A.
, and
Wood
,
K. L.
,
2019
, “
Design Principle Cards: Toolset to Support Innovation With Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
,
Anaheim, CA
, DETC2019-97231.
23.
Taufik
,
M.
, and
Jain
,
P. K.
,
2013
, “
Role of Build Orientation in Layered Manufacturing: A Review
,”
Int. J. Manuf. Technol. Manage.
,
27
(
1–3
), pp.
47
73
. 10.1504/IJMTM.2013.058637
24.
Zwier
,
M. P.
, and
Wits
,
W. W.
,
2016
, “
Design for Additive Manufacturing: Automated Build Orientation Selection and Optimization
,”
Proc. CIRP
,
55
, pp.
128
133
. 10.1016/j.procir.2016.08.040
25.
Wauthle
,
R.
,
Vrancken
,
B.
,
Beynaerts
,
B.
,
Jorissen
,
K.
,
Schrooten
,
J.
,
Kruth
,
J. P.
, and
Humbeeck
,
J. V.
,
2015
, “
Effects of Build Orientation and Heat Treatment on the Microstructure and Mechanical Properties of Selective Laser Melted Ti6al4v Lattice Structures
,”
Addit. Manuf.
,
5
, pp.
77
84
. 10.1016/j.addma.2014.12.008
26.
Das
,
P.
,
Chandran
,
R.
,
Samant
,
R.
, and
Anand
,
S.
,
2015
, “
Optimum Part Build Orientation in Additive Manufacturing for Minimizing Part Errors and Support Structures
,”
Proc. Manuf.
,
1
, pp.
343
354
. 10.1016/j.promfg.2015.09.041
27.
Ulu
,
E.
,
Korkmaz
,
E.
,
Yay
,
K.
,
Ozdoganlar
,
O. B.
, and
Kara
,
L.
,
2015
, “
Enhancing the Structural Performance of Additively Manufactured Objects Through Build Orientation Optimization
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111410
. 10.1115/1.4030998
28.
Osorio
,
A.
,
1995
, “
Estimating Building Times for the Stereos 300
,”
European Action on Rapid Prototyping Newsletter
,
7
, pp.
14
16
.
29.
Yu
,
G. B.
, and
Noble
,
D.
,
1994
, “
The Development of a Laser Build-Time Calculation Program Using Stereolithographic Apparatus (SLA)
,”
3rd European Conference on Rapid Prototyping and Manufacturing
,
Nottingham, UK
,
July
, pp.
353
367
.
30.
Chen
,
C. C.
, and
Sullivan
,
P. A.
,
1996
, “
Predicting Total Build-Time and the Resultant Cure Depth of the 3D Stereolithography Process
,”
Rapid Prototyp. J.
,
2
(
4
), pp.
27
40
. 10.1108/13552549610153389
31.
Alexander
,
P.
,
Allen
,
S.
, and
Dutta
,
D.
,
1998
, “
Part Orientation and Build Cost Determination in Layered Manufacturing
,”
Comput. Aided Des.
,
30
(
5
), pp.
343
356
. 10.1016/S0010-4485(97)00083-3
32.
Giannatsis
,
J.
,
Dedoussis
,
V.
, and
Laios
,
L.
,
2001
, “
A Study of the Build-Time Estimation Problem for Stereolithography Systems
,”
Robot. Comput. Integr. Manuf.
,
17
(
4
), pp.
295
304
. 10.1016/S0736-5845(01)00007-2
33.
Campbell
,
I.
,
Combrinck
,
J.
,
de Beer
,
D.
, and
Barnard
,
L.
,
2008
, “
Stereolithography Build Time Estimation Based on Volumetric Calculations
,”
Rapid Prototyp. J.
,
14
(
5
), pp.
271
279
. 10.1108/13552540810907938
34.
Pham
,
D.
, and
Wang
,
X.
,
2000
, “
Prediction and Reduction of Build Times for the Selective Laser Sintering Process
,”
Proc. Inst. Mech. Eng. B
,
214
(
6
), pp.
425
430
. 10.1243/0954405001517739
35.
Ruffo
,
M.
,
Tuck
,
C.
, and
Hague
,
R.
,
2006
, “
Cost Estimation for Rapid Manufacturing-Laser Sintering Production for Low to Medium Volumes
,”
Proc. Inst. Mech. Eng. B
,
220
(
9
), pp.
1417
1427
. 10.1243/09544054JEM517
36.
Barclift
,
M.
,
Joshi
,
S.
,
Simpson
,
T.
, and
Dickman
,
C.
,
2016
, “
Cost Modeling and Depreciation for Reused Powder Feedstocks in Powder Bed Fusion Additive Manufacturing
,”
27th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
,
Austin, TX
,
Aug.
, pp.
2007
2028
.
37.
Barclift
,
M.
,
Armstrong
,
A.
,
Simpson
,
T. W.
, and
Joshi
,
S. B.
,
2017
, “
CAD-Integrated Cost Estimation and Build Orientation Optimization to Support Design for Metal Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
,
Cleveland, OH
,
DETC2017-68376
.
38.
Ultimaker
, “
Ultimaker Cura Software
,” https://ultimaker.com/en/products/cura-software, Accessed July 26, 2019.
39.
Xometry
, “
Xometry Machining and 3D Printing Services
,” https://www.xometry.com, Accessed July 26, 2019.
40.
Repetier
, “
Repetier Software
,” https://wwww.repetier.com, Accessed July 26, 2019.
41.
MatterHackers
, “
Mattercontrol Software
,” https://www.matterhackers.com/store/l/mattercontrol/sk/MKZGTDW6, Accessed July 26, 2019.
42.
Dinda
,
S.
,
Modi
,
D.
,
Simpson
,
T. W.
,
Tedia
,
S.
, and
Williams
,
C. B.
,
2017
, “
Expediting Build Time, Material, and Cost Estimation for Material Extrusion Processes to Enable Mobile Applications
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
,
Cleveland, OH
,
DETC2017-68230
.
43.
Lindemann
,
C.
,
Reiher
,
T.
,
Jahnke
,
U.
, and
Koch
,
R.
,
2015
, “
Towards a Sustainable and Economic Selection of Part Candidates for Additive Manufacturing
,”
Rapid Prototyp. J.
,
21
(
2
), pp.
216
227
. 10.1108/RPJ-12-2014-0179
44.
Ghiasian
,
S. E.
,
Jaiswal
,
P.
,
Rai
,
R.
, and
Lewis
,
K.
,
2018
, “
From Conventional to Additive Manufacturing: Determining Component Fabrication Feasibility
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
,
Quebec City, Quebec
, DETC2018-86238.
45.
Conner
,
B. P.
,
Manogharan
,
G. P.
,
Martof
,
A. N.
,
Rodomsky
,
L. M.
,
Rodomsky
,
C. M.
,
Jordan
,
D. C.
, and
Limperos
,
J. W.
,
2014
, “
Making Sense of 3-D Printing: Creating a Map of Additive Manufacturing Products and Services
,”
Addit. Manuf.
,
1–4
, pp.
64
76
. 10.1016/j.addma.2014.08.005
46.
Cohen-Or
,
D.
, and
Kaufman
,
A.
,
1995
, “
Fundamentals of Surface Voxelization
,”
Graph. Models Image Process.
,
57
(
6
), pp.
453
461
. 10.1006/gmip.1995.1039
47.
Greene
,
N.
,
1989
, “
Voxel Space Automata: Modeling With Stochastic Growth Processes in Voxel Space
,”
ACM SIGGRAPH Computer Graphics
,
Boston, MA
, Vol.
23
,
ACM
,
New York
, pp.
175
184
.
48.
Hart
,
J. C.
,
Sandin
,
D. J.
, and
Kauffman
,
L. H.
,
1989
, “
Ray Tracing Deterministic 3-D Fractals
,”
ACM SIGGRAPH Computer Graphics
,
Boston, MA
, Vol.
23
,
ACM
,
New York
, pp.
289
296
.
49.
Dong
,
Z.
,
Chen
,
W.
,
Bao
,
H.
,
Zhang
,
H.
, and
Peng
,
Q.
,
2004
, “
Real-Time Voxelization for Complex Polygonal Models
,”
12th Pacific Conference in Computer Graphics and Applications, IEEE
,
Seoul, South Korea
,
October
, pp.
43
50
.
50.
Nealen
,
A.
,
Müller
,
M.
,
Keiser
,
R.
,
Boxerman
,
E.
, and
Carlson
,
M.
,
2006
, “
Physically Based Deformable Models in Computer Graphics
,”
Computer Graphics Forum
,
25
(
4
), pp.
809
836
. 10.1111/j.1467-8659.2006.01000.x
51.
Telea
,
A.
, and
Jalba
,
A.
,
2011
, “Voxel-Based Assessment of Printability of 3D Shapes,”
Mathematical Morphology and Its Applications to Image and Signal Processing. ISMM 2011
,
P.
Soille
,
M.
Pesaresi
, and
G. K.
Ouzounis
, eds.,
Lecture Notes in Computer Science
, Vol.
6671
,
Springer
,
Berlin, Heidelberg
, pp.
393
404
.
52.
Forstmann
,
S.
, and
Ohya
,
J.
,
2010
, “
Efficient, High-Quality, GPU-Based Visualization of Voxelized Surface Data With Fine and Complicated Structures
,”
IEICE Trans. Inform. Syst.
,
93
(
11
), pp.
3088
3099
. 10.1587/transinf.E93.D.3088
53.
Messac
,
A.
,
1996
, “
Physical Programming—Effective Optimization for Computational Design
,”
AIAA J.
,
34
(
1
), pp.
149
158
. 10.2514/3.13035
54.
Messac
,
A.
,
2015
,
Optimization in Practice With MATLAB R: For Engineering Students and Professionals
,
Cambridge University Press
,
New York
.
55.
Maragos
,
P.
,
1996
, “
Differential Morphology and Image Processing
,”
IEEE Trans. Image Process.
,
5
(
6
), pp.
922
937
. 10.1109/83.503909
56.
Brockett
,
R. W.
, and
Maragos
,
P.
,
1994
, “
Evolution Equations for Continuous-Scale Morphological Filtering
,”
IEEE Trans. Signal Process.
,
42
(
12
), pp.
3377
3386
. 10.1109/78.340774
57.
Nelaturi
,
S.
,
Kim
,
W.
, and
Kurtoglu
,
T.
,
2015
, “
Manufacturability Feedback and Model Correction for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021015
. 10.1115/1.4029374
58.
Kumke
,
M.
,
Watschke
,
H.
, and
Vietor
,
T.
,
2016
, “
A New Methodological Framework for Design for Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
11
(
1
), pp.
3
19
. 10.1080/17452759.2016.1139377
59.
Dougherty
,
R.
, and
Kunzelmann
,
K.-H.
,
2007
, “
Computing Local Thickness of 3D Structures With ImageJ
,”
Microsc. Microanal.
,
13
(
S02
), p.
1678
. 10.1017/S1431927607074430
60.
Vayre
,
B.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2012
, “
Designing for Additive Manufacturing
,”
Proc. CIRP
,
3
, pp.
632
637
. 10.1016/j.procir.2012.07.108
61.
3D HUBS
, “
Industrial FDM Vs. Desktop FDM
,” https://www.3dhubs.com/knowledge-base/industrial-fdm-vs-desktop-fdm, Accessed July 26, 2019.
You do not currently have access to this content.