Abstract

Nowadays, increasing awareness of environmental protection has evoked the adoption of green technologies in design and manufacturing. As a revolutionizing manufacturing technology that produces components in a layer-by-layer fashion, additive manufacturing (AM) has followed this trend. Among a variety of AM processes, fused filament fabrication (FFF) is one of the most commonly used technologies. However, AM (including FFF) is inherently energy expensive and energy inefficient compared with the conventional manufacturing. Thus, an urgent investigation is needed to reduce the energy consumption for AM production. On the other hand, part geometric accuracy is an important aspect for the quality of additively manufactured components. It is not meaningful to improve AM’s energy consumption performance with compromised part geometric accuracy. Therefore, it is necessary to jointly consider energy consumption as well as part geometric accuracy in the AM process design. This study applies the statistical regression approach to model AM energy consumption and part geometric accuracy. The nondominated sorting genetic algorithm II (NSGA-II) and the technique for order of preference by similarity to ideal solution (TOPSIS) method together are used to locate the compromised optimal solution for AM process parameter settings. The effectiveness of the proposed approach is demonstrated through a case study developed with the FFF process and a specific part design. The results of this study are significant to both AM energy consumption and part geometric accuracy in terms of qualitative and quantitative analyses. Furthermore, the study can potentially guide the future AM sustainability model development and be extended to future AM process improvement.

References

1.
U.S. Environmental Protection Agency (EPA)
,
2015
, “
Report on the Environment (ROE)
,” https://www.epa.gov/report-environment, Accessed November 19, 2018.
2.
Kruth
,
J.-P.
,
Leu
,
M.-C.
, and
Nakagawa
,
T.
,
1998
, “
Progress in Additive Manufacturing and Rapid Prototyping
,”
CIRP Ann.
,
47
(
2
), pp.
525
540
. 10.1016/S0007-8506(07)63240-5
3.
ASTM
,
2012
,
F2792-12a Standard Terminology for Additive Manufacturing Technologies
,
ASTM International
,
West Conshohocken, PA
.
4.
Cotteleer
,
M.
, and
Joyce
,
J.
,
2014
, “
3D Opportunity: Additive Manufacturing Paths to Performance, Innovation, and Growth
,”
Deloitte Rev.
,
14
(
14
), pp.
5
19
.
5.
Wohlers
,
T. T.
, and
Caffrey
,
T.
,
2015
,
Wohlers Report 2015: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report
,
Wohlers Associates
,
Fort Collins, CO
.
6.
Ma
,
J.
,
Harstvedt
,
J. D.
,
Dunaway
,
D.
,
Bian
,
L.
, and
Jaradat
,
R.
,
2018
, “
An Exploratory Investigation of Additively Manufactured Product Life Cycle Sustainability Assessment
,”
J. Clean. Prod.
,
192
(
10
), pp.
55
70
. 10.1016/j.jclepro.2018.04.249
7.
Paul
,
R.
, and
Anand
,
S.
,
2012
, “
Process Energy Analysis and Optimization in Selective Laser Sintering
,”
J. Manuf. Syst.
,
31
(
4
), pp.
429
437
. 10.1016/j.jmsy.2012.07.004
8.
Gutowski
,
T. G.
,
Branham
,
M. S.
,
Dahmus
,
J. B.
,
Jones
,
A. J.
,
Thiriez
,
A.
, and
Sekulic
,
D. P.
,
2009
, “
Thermodynamic Analysis of Resources Used in Manufacturing Processes
,”
Environ. Sci. Technol.
,
43
(
5
), pp.
1584
1590
. 10.1021/es8016655
9.
Dunaway
,
D.
,
Harstvedt
,
J. D.
, and
Ma
,
J.
,
2017
, “
A Preliminary Experimental Study of Additive Manufacturing Energy Consumption
,”
Proceedings of 2017 ASME-IDETC Conference
,
Cleveland, OH
,
Aug. 6–9
,
American Society of Mechanical Engineers
, p.
V004T05A013
.
10.
Tian
,
W. M.
,
Ma
,
J.
, and
Alizadeh
,
M.
,
2019
, “
Energy Consumption Optimization With Geometric Accuracy Consideration for Additive Manufacturing Processes
,”
Int. J. Adv. Manuf. Technol.
,
103
(
5–8
), pp.
3223
3233
. 10.1007/s00170-019-03683-5
11.
Huang
,
Q.
,
Zhang
,
J.
,
Sabbaghi
,
A.
, and
Dasgupta
,
T.
,
2015
, “
Optimal Offline Compensation of Shape Shrinkage for Three-Dimensional Printing Processes
,”
IIE Trans.
,
47
(
5
), pp.
431
441
. 10.1080/0740817X.2014.955599
12.
Aboutaleb
,
A. M.
,
Tschopp
,
M. A.
,
Rao
,
P. K.
, and
Bian
,
L.
,
2017
, “
Multi-Objective Accelerated Process Optimization of Part Geometric Accuracy in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
10
), p.
101001
. 10.1115/1.4037319
13.
Wang
,
Q.
,
Liu
,
F.
, and
Li
,
C.
,
2013
, “
An Integrated Method for Assessing the Energy Efficiency of Machining Workshop
,”
J. Clean. Prod.
,
52
, pp.
122
133
. 10.1016/j.jclepro.2013.03.020
14.
Yang
,
Y.
,
Li
,
L.
,
Pan
,
Y.
, and
Sun
,
Z.
,
2017
, “
Energy Consumption Modeling of Stereolithography-Based Additive Manufacturing Toward Environmental Sustainability
,”
J. Ind. Ecol.
,
21
(
S1
), pp.
S168
S178
. 10.1111/jiec.12589
15.
Luo
,
Y.
,
Ji
,
Z.
,
Leu
,
M. C.
, and
Caudill
,
R.
,
1999
, “
Environmental Performance Analysis of Solid Freedom Fabrication Processes
,”
Proceedings of the 1999 IEEE International Symposium on Electronics and the Environment (ISEE-1999)
,
Danvers, MA
,
May 13
,
IEEE
, pp.
1
6
.
16.
Drizo
,
A.
, and
Pegna
,
J.
,
2006
, “
Environmental Impacts of Rapid Prototyping: An Overview of Research to Date
,”
Rapid Prototyp. J.
,
12
(
2
), pp.
64
71
. 10.1108/13552540610652393
17.
Sreenivasan
,
R.
, and
Bourell
,
D.
,
2010
, “
Sustainability Study in Selective Laser Sintering—An Energy Perspective
,”
Proceedings of the Minerals, Metals and Materials Society/AIME
,
Warrendale, PA
,
Feb. 14–18
.
18.
Meteyer
,
S.
,
Xu
,
X.
,
Perry
,
N.
, and
Zhao
,
Y. F.
,
2014
, “
Energy and Material Flow Analysis of Binder–Jetting Additive Manufacturing Processes
,”
Procedia CIRP
,
15
, pp.
19
25
. 10.1016/j.procir.2014.06.030
19.
Verma
,
A.
, and
Rai
,
R.
,
2013
, “
Energy Efficient Modeling and Optimization of Additive Manufacturing Processes
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 12–14
, pp.
231
241
.
20.
Huang
,
R.
,
Riddle
,
M.
,
Graziano
,
D.
,
Warren
,
J.
,
Das
,
S.
,
Nimbalkar
,
S.
,
Cresko
,
J.
, and
Masanet
,
E.
,
2016
, “
Energy and Emissions Saving Potential of Additive Manufacturing: The Case of Lightweight Aircraft Components
,”
J. Clean. Prod.
,
135
, pp.
1559
1570
. 10.1016/j.jclepro.2015.04.109
21.
Baumers
,
M.
,
Tuck
,
C.
,
Bourell
,
D. L.
,
Sreenivasan
,
R.
, and
Hague
,
R.
,
2011
, “
Sustainability of Additive Manufacturing: Measuring the Energy Consumption of the Laser Sintering Process
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
225
(
12
), pp.
2228
2239
. 10.1177/0954405411406044
22.
Telenko
,
C.
, and
Conner Seepersad
,
C.
,
2012
, “
A Comparison of the Energy Efficiency of Selective Laser Sintering and Injection Molding of Nylon Parts
,”
Rapid Prototyp. J.
,
18
(
6
), pp.
472
481
. 10.1108/13552541211272018
23.
Faludi
,
J.
,
Bayley
,
C.
,
Bhogal
,
S.
, and
Iribarne
,
M.
,
2015
, “
Comparing Environmental Impacts of Additive Manufacturing Versus Traditional Machining Via Life-Cycle Assessment
,”
Rapid Prototyp. J.
,
21
(
1
), pp.
14
33
. 10.1108/RPJ-07-2013-0067
24.
Mognol
,
P.
,
Lepicart
,
D.
, and
Perry
,
N.
,
2006
, “
Rapid Prototyping: Energy and Environment in the Spotlight
,”
Rapid Prototyp. J.
,
12
(
1
), pp.
26
34
. 10.1108/13552540610637246
25.
Clemon
,
L.
,
Sudradjat
,
A.
,
Jaquez
,
M.
,
Krishna
,
A.
,
Rammah
,
M.
, and
Dornfeld
,
D.
,
2013
, “
Precision and Energy Usage for Additive Manufacturing
,”
Proceedings of ASME 2013 International Mechanical Engineering Congress and Exposition
,
San Diego
,
Nov. 15–21
,
American Society of Mechanical Engineers
, p.
V02AT02A015
.
26.
Baumers
,
M.
,
Tuck
,
C.
,
Wildman
,
R.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2017
, “
Shape Complexity and Process Energy Consumption in Electron Beam Melting: A Case of Something for Nothing in Additive Manufacturing?
J. Ind. Ecol.
,
21
(
S1
), pp.
S157
S167
. 10.1111/jiec.12397
27.
Allison
,
J.
,
Sharp
,
C.
, and
Seepersad
,
C. C.
,
2017
, “
A Test Part for Evaluating the Accuracy and Resolution of a Polymer Powder Bed Fusion Process
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100902
. 10.1115/1.4037303
28.
Ha
,
S.-H.
,
Lee
,
H.
,
Hemker
,
K. J.
, and
Guest
,
J. K.
,
2019
, “
Topology Optimization of Three-Dimensional Woven Materials Using a Ground Structure Design Variable Representation
,”
ASME J. Mech. Des.
,
141
(
6
), p.
061403
. 10.1115/1.4042114
29.
Zhou
,
M. Y.
,
Xi
,
J. T.
, and
Yan
,
J. Q.
,
2004
, “
Adaptive Direct Slicing With Non-Uniform Cusp Heights for Rapid Prototyping
,”
Int. J. Adv. Manuf. Technol.
,
23
(
1–2
), pp.
20
27
. 10.1007/s00170-002-1523-8
30.
Siraskar
,
N.
,
Paul
,
R.
, and
Anand
,
S.
,
2015
, “
Adaptive Slicing in Additive Manufacturing Process Using a Modified Boundary Octree Data Structure
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011007
. 10.1115/1.4028579
31.
Weheba
,
G.
, and
Sanchez-Marsa
,
A.
,
2006
, “
Using Response Surface Methodology to Optimize the Stereolithography Process
,”
Rapid Prototyp. J.
,
12
(
2
), pp.
72
77
. 10.1108/13552540610652401
32.
Lanzotti
,
A.
,
Martorelli
,
M.
, and
Staiano
,
G.
,
2015
, “
Understanding Process Parameter Effects of Reprap Open-Source Three-Dimensional Printers Through a Design of Experiments Approach
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011017
. 10.1115/1.4029045
33.
Li
,
Y.
, and
Gu
,
P.
,
2004
, “
Free-Form Surface Inspection Techniques State of the Art Review
,”
Comput. Aided Des.
,
36
(
13
), pp.
1395
1417
. 10.1016/j.cad.2004.02.009
34.
Rao
,
P. K.
,
Liu
,
J. P.
,
Roberson
,
D.
,
Kong
,
Z. J.
, and
Williams
,
C.
,
2015
, “
Online Real-Time Quality Monitoring in Additive Manufacturing Processes Using Heterogeneous Sensors
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061007
. 10.1115/1.4029823
35.
Tootooni
,
M. S.
,
Dsouza
,
A.
,
Donovan
,
R.
,
Rao
,
P. K.
,
Kong
,
Z. J.
, and
Borgesen
,
P.
,
2017
, “
Classifying the Dimensional Variation in Additive Manufactured Parts From Laser-Scanned Three-Dimensional Point Cloud Data Using Machine Learning Approaches
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091005
. 10.1115/1.4036641
36.
Khanzadeh
,
M.
,
Rao
,
P.
,
Jafari-Marandi
,
R.
,
Smith
,
B. K.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Quantifying Geometric Accuracy With Unsupervised Machine Learning: Using Self-Organizing Map on Fused Filament Fabrication Additive Manufacturing Parts
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031011
. 10.1115/1.4038598
37.
Cheng
,
W.
,
Fuh
,
J. Y. H.
,
Nee
,
A. Y. C.
,
Wong
,
Y. S.
,
Loh
,
H. T.
, and
Miyazawa
,
T.
,
1995
, “
Multi-Objective Optimization of Part-Building Orientation in Stereolithography
,”
Rapid Prototyp. J.
,
1
(
4
), pp.
12
23
. 10.1108/13552549510104429
38.
Singhal
,
S. K.
,
Jain
,
P. K.
,
Pandey
,
P. M.
, and
Nagpal
,
A. K.
,
2009
, “
Optimum Part Deposition Orientation for Multiple Objectives in SL and SLS Prototyping
,”
Int. J. Prod. Res.
,
47
(
22
), pp.
6375
6396
. 10.1080/00207540802183661
39.
Ulu
,
E.
,
Huang
,
R.
,
Kara
,
L. B.
, and
Whitefoot
,
K. S.
,
2019
, “
Concurrent Structure and Process Optimization for Minimum Cost Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
141
(
6
), p.
061701
. 10.1115/1.4042112
40.
Das
,
I.
, and
Dennis
,
J. E.
,
1997
, “
A Closer Look at Drawbacks of Minimizing Weighted Sums of Objectives for Pareto Set Generation in Multicriteria Optimization Problems
,”
Struct. Optim.
,
14
(
1
), pp.
63
69
. 10.1007/BF01197559
41.
Deb
,
K.
,
2001
, “
Nonlinear Goal Programming Using Multi-Objective Genetic Algorithms
,”
J. Oper. Res. Soc.
,
52
(
3
), pp.
291
302
. 10.1057/palgrave.jors.2601089
42.
Khodaygan
,
S.
, and
Golmohammadi
,
A. H.
,
2017
, “
Multi-Criteria Optimization of the Part Build Orientation (PBO) Through a Combined Meta-Modeling/NSGAII/TOPSIS Method for Additive Manufacturing Processes
,”
Int. J. Interact. Des. Manuf.
,
1
(
3
), pp.
1
15
. 10.1007/s12008-017-0443-7
43.
Jolliffe
,
I. T.
,
2002
,
Principal Component Analysis
, 2nd ed.,
Springer
,
New York
.
44.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
. 10.1109/4235.996017
45.
Hwang
,
C.-L.
, and
Yoon
,
K.
,
1981
, “Methods for Multiple Attribute Decision Making,”
Multiple Attribute Decision Making-Methods and Applications: A Start-of-the-Art Review
, 1,
C.-L.
Hwang
,
K.
Yoon
, eds.,
Springer
,
Berlin
, pp.
58
191
.
46.
Ma
,
J.
,
Tian
,
W.
, and
Alizadeh
,
M.
,
2018
, “
Data Driven Modeling and Optimization for Energy Efficiency in Additive Manufacturing Process With Geometric Accuracy Consideration
,”
Proceedings of 2018 ASME-IDETC Conference
,
Quebec City
,
Aug. 26–29
, p.
V004T05A017
.
You do not currently have access to this content.