This study presents an efficient multimaterial design optimization algorithm that is suitable for nonlinear structures. The proposed algorithm consists of three steps: conceptual design generation, clustering, and metamodel-based global optimization. The conceptual design is generated using a structural optimization algorithm for linear models or a heuristic design algorithm for nonlinear models. Then, the conceptual design is clustered into a predefined number of clusters (materials) using a machine learning algorithm. Finally, the global optimization problem aims to find the optimal material parameters of the clustered design using metamodels. The metamodels are built using sampling and cross-validation and sequentially updated using an expected improvement function until convergence. The proposed methodology is demonstrated using examples from multiple physics and compared with traditional multimaterial topology optimization (MTOP) method. The proposed approach is applied to a nonlinear, multi-objective design problems for crashworthiness.

References

1.
Bendsøe
,
M. P.
,
1995
,
Optimization of Structural Topology, Shape and Material
,
Springer
,
New York
.
2.
Allaire
,
G.
,
2001
,
Shape Optimization by the Homogenization Method
,
Springer
,
New York
.
3.
Sigmund
,
O.
, and
Torquato
,
S.
,
1997
, “
Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method
,”
J. Mech. Phys. Solids
,
45
(
6
), pp.
1037
1067
.
4.
Sigmund
,
O.
, and
Torquato
,
S.
,
1999
, “
Design of Smart Composite Materials Using Topology Optimization
,”
Smart Mater. Struct.
,
8
(
3
), pp.
365
379
.
5.
Gibiansky
,
L. V.
, and
Sigmund
,
O.
,
2000
, “
Multiphase Composites With Extremal Bulk Modulus
,”
J. Mech. Phys. Solids
,
48
(
3
), pp.
461
498
.
6.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Multidiscip. Optim.
,
1
(
4
), pp.
193
202
.
7.
Mlejnek
,
H.
,
1992
, “
Some Aspects of the Genesis of Structures
,”
Struct. Optim.
,
5
(
1–2
), pp.
64
69
.
8.
Zhou
,
M.
, and
Rozvany
,
G.
,
1991
, “
The COC Algorithm—Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(1–3), pp.
309
336
.
9.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolations in Topology Optimization
,”
Arch. Appl. Mech.
,
69
, pp.
635
654
.
10.
Gao
,
T.
, and
Zhang
,
W.
,
2011
, “
A Mass Constraint Formulation for Structural Topology Optimization With Multiphase Materials
,”
Int. J. Numer. Methods Eng.
,
88
(
8
), pp.
774
796
.
11.
Cui
,
M. T.
, and
Chen
,
H. F.
,
2014
, “
An Improved Alternating Active-Phase Algorithm for Multi-Material Topology Optimization Problems
,”
Appl. Mech. Mater.
,
635–637
, pp.
105
111
.
12.
Osher
,
S.
, and
Santosa
,
F.
,
2001
, “
Level Set Methods for Optimization Problem Involving Geometry and Constraints—I: Frequencies of a Two-Density Inhomogeneous Drum
,”
J. Comput. Phys.
,
171
(
1
), pp.
272
288
.
13.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
14.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
15.
Allaire
,
G.
, and
Castro
,
C.
,
2002
, “
Optimization of Nuclear Fuel Reloading by the Homogenization Method
,”
Struct. Multidiscip. Optim.
,
24
(
1
), pp.
11
22
.
16.
Mei
,
Y.
, and
Wang
,
X.
,
2004
, “
A Level Set Method for Structural Topology Optimization and Its Applications
,”
Adv. Eng. Software
,
35
(
7
), pp.
415
441
.
17.
Wang
,
M. Y.
, and
Wang
,
X.
,
2004
, ““
Color” Level Sets: A Multi-Phase Method for Structural Topology Optimization With Multiple Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
6–8
), pp.
469
496
.
18.
Wang
,
M. Y.
, and
Wang
,
X.
,
2005
, “
A Level-Set Based Variational Method for Design and Optimization of Heterogeneous Objects
,”
CAD Comput. Aided Des.
,
37
(
3
), pp.
321
337
.
19.
Dombre
,
E.
,
Allaire
,
G.
,
Pantz
,
O.
, and
Schmitt
,
D.
,
2012
, “
Shape Optimization of a Sodium Fast Reactor Core
,” CEMRACS, Marseille, France, July 18–Aug. 26, pp. 319–334.
20.
Wei
,
P.
, and
Wang
,
M. Y.
,
2009
, “
Piecewise Constant Level Set Method for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
78
(
4
), pp.
379
402
.
21.
Luo
,
Z.
,
Tong
,
L.
,
Luo
,
J.
,
Wei
,
P.
, and
Wang
,
M. Y.
,
2009
, “
Design of Piezoelectric Actuators Using a Multiphase Level Set Method of Piecewise Constants
,”
J. Comput. Phys.
,
228
(
7
), pp.
2643
2659
.
22.
Hamza
,
K.
,
Aly
,
M.
, and
Hegazi
,
H.
,
2013
, “
A Kriging-Interpolated Level-Set Approach for Structural Topology Optimization
,”
ASME J. Mech. Des.
,
136
(
1
), p.
011008
.
23.
Guirguis
,
D.
,
Hamza
,
K.
,
Aly
,
M.
,
Hegazi
,
H.
, and
Saitou
,
K.
,
2015
, “
Multi-Objective Topology Optimization of Multi-Component Continuum Structures Via a Kriging-Interpolated Level Set Approach
,”
Struct. Multidiscip. Optim.
,
51
(
3
), pp.
733
748
.
24.
Yoshimura
,
M.
,
Shimoyama
,
K.
,
Misaka
,
T.
, and
Obayashi
,
S.
,
2017
, “
Topology Optimization of Fluid Problems Using Genetic Algorithm Assisted by the Kriging Model
,”
Int. J. Numer. Methods Eng.
,
109
(
4
), pp.
514
532
.
25.
Chopp
,
D.
,
1993
, “
Computing Minimal Surface Via Level Set Curvature Flow
,”
J. Comput. Phys.
,
106
(
1
), pp.
77
91
.
26.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase flow
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.
27.
Sethian
,
J.
,
1999
,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science
,
Cambridge University Press
,
Cambridge, UK
.
28.
Osher
,
S.
, and
Fedkiw
,
R.
,
2002
,
Level Set Methods and Dynamic Implicit Surfaces
,
Springer
,
New York
.
29.
Bourdin
,
B.
, and
Chambolle
,
A.
,
2003
, “
Design-Dependent Loads in Topology Optimization
,”
ESAIM: Control Optim. Calculus Var.
,
9
, pp.
19
48
.
30.
Wang
,
M. Y.
, and
Zhou
,
S.
,
2005
, “
Synthesis of Shape and Topology of Multi-Material Structures With a Phase-Field Method
,”
J. Comput. Aided Mater. Des.
,
11
(
2–3
), pp.
117
138
.
31.
Bourdin
,
B.
, and
Chambolle
,
A.
,
2006
, “
The Phase-Field Method in Optimal Design
,”
IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials
, Dordrecht, The Netherlands, pp.
207
215
.
32.
Takezawa
,
A.
,
Nishiwaki
,
S.
, and
Kitamura
,
M.
,
2010
, “
Shape and Topology Optimization Based on the Phase Field Method and Sensitivity Analysis
,”
J. Comput. Phys.
,
229
(
7
), pp.
2697
2718
.
33.
Blank
,
L.
,
Garcke
,
H.
,
Sarbu
,
L.
, and
Styles
,
V.
,
2012
, “
Primal-Dual Active Set Methods for Allen-Cahn Variational Inequalities With Nonlocal Constraints
,”
Numer. Methods Partial Differ. Equations
,
29
(3), pp. 999–1030.
34.
Tavakoli
,
R.
,
2014
, “
Multimaterial Topology Optimization by Volume Constrained Allen-Cahn system and Regularized Projected Steepest Descent Method
,”
Comput. Methods Appl. Mech. Eng.
,
276
, pp.
534
565
.
35.
Huang
,
X.
, and
Xie
,
Y. M.
,
2009
, “
Bi-Directional Evolutionary Topology Optimization of Continuum Structures With One or Multiple Materials
,”
Comput. Mech.
,
43
(
3
), pp.
393
401
.
36.
Huang
,
X.
, and
Xie
,
M.
,
2010
,
Evolutionary Topology Optimization of Continuum Structures: Methods and Applications
,
Wiley
,
Chichester, UK
.
37.
Lund
,
E.
, and
Stegmann
,
J.
,
2005
, “
On Structural Optimization of Composite Shell Structures Using a Discrete Constitutive Parametrization
,”
Wind Energy
,
8
(
1
), pp.
109
124
.
38.
Stegmann
,
J.
, and
Lund
,
E.
,
2005
, “
Discrete Material Optimization of General Composite Shell Structures
,”
Int. J. Numer. Methods Eng.
,
62
(
14
), pp.
2009
2027
.
39.
Tovar
,
A.
,
Patel
,
N. M.
,
Niebur
,
G. L.
,
Sen
,
M.
, and
Renaud
,
J. E.
,
2006
, “
Topology Optimization Using a Hybrid Cellular Automation Method With Local Control Rules
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1205
1216
.
40.
Tovar
,
A.
,
Patel
,
N. M.
,
Kaushik
,
A. K.
, and
Renaud
,
J. E.
,
2007
, “
Optimality Conditions of the Hybrid Cellular Automata for Structural Optimization
,”
AIAA J.
,
45
(
3
), pp.
673
683
.
41.
Goetz
,
J.
,
Tan
,
H.
,
Renaud
,
J.
, and
Tovar
,
A.
,
2012
, “
Two-Material Optimization of Plate Armour for Blast Mitigation Using Hybrid Cellular Automata
,”
Eng. Optim.
,
44
(
8
), pp.
985
1005
.
42.
Holmberg
,
E.
,
Torstenfelt
,
B.
, and
Klarbring
,
A.
,
2013
, “
Stress Constrained Topology Optimization
,”
Struct. Multidiscip. Optim.
,
48
(
1
), pp.
33
47
.
43.
Ishikawa
,
T.
,
Nakayama
,
K.
,
Kurita
,
N.
, and
Dawson
,
F. P.
,
2014
, “
Optimization of Rotor Topology in PM Synchronous Motors by Genetic Algorithm Considering Cluster of Materials and Cleaning Procedure
,”
IEEE Trans. Magn.
,
50
(
2
), pp.
637
640
.
44.
Ishikawa
,
T.
,
Mizuno
,
S.
, and
Krita
,
N.
,
2017
, “
Topology Optimization Method for Asymmetrical Rotor Using Cluster and Cleaning Procedure
,”
IEEE Trans. Magn.
,
53
(
6
), pp.
1
4
.
45.
Aulig
,
N.
, and
Olhofer
,
M.
,
2016
, “
State-Based Representation for Structural Topology Optimization and Application to Crashworthiness
,”
IEEE Congress on Evolutionary Computation
(
CEC
), Vancouver, BC, Canada, July 24–29, pp.
1642
1649
.
46.
Liu
,
K.
,
Tovar
,
A.
, and
Detwiler
,
D.
,
2014
, “
Thin-Walled Component Design Optimization for Crashworthiness Using Principles of Compliant Mechanism Synthesis and Kriging Sequential Approximation
,”
Engineering Optimization
, CRC Press, Boca Raton, FL, pp. 775–780.
47.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Elastic Behavior of Multiphase Minerals
,”
J. Mech. Phys. Solids
,
11
(
2
), pp.
127
140
.
48.
Wang
,
Y.-J.
,
Zhang
,
J.-S.
, and
Zhang
,
G.-Y.
,
2007
, “
A Dynamic Clustering Based Differential Evolution Algorithm for Global Optimization
,”
Eur. J. Oper. Res.
,
183
(
1
), pp.
56
73
.
49.
Xu
,
H.
,
Chuang
,
C.-H.
, and
Yang
,
R.-J.
,
2015
, “
A Data Mining-Based Strategy for Direct Multidisciplinary Optimization
,”
SAE Int. J. Mater. Manuf.
,
8
(
2
), pp.
357
363
.
50.
MacQueen
,
J. B.
,
1967
, “
Some Methods for Classification and Analysis of Multivariate Observations
,”
Fifth Berkeley Symposium on Mathematical Statistics and Probability
, June 21–July 18 and Dec. 27–Jan. 7, Berkeley, CA, pp.
281
297
.https://projecteuclid.org/euclid.bsmsp/1200512992
51.
Liu
,
K.
,
Tovar
,
A.
,
Nutwell
,
E.
, and
Detwiler
,
D.
,
2015
, “
Thin-Walled Compliant Mechanism Component Design Assisted by Machine Learning and Multiple Surrogates
,”
SAE
Paper No. 2015-01-1369.
52.
MacKay
,
D.
,
2003
,
Information Theory, Inference, and Learning Algorithms
,
Cambridge University Press
, Cambridge, UK.
53.
Bandi
,
P.
,
Schmiedeler
,
J. P.
, and
Tovar
,
A.
,
2013
, “
Design of Crashworthy Structures With Controlled Energy Absorption in the Hybrid Cellular Automaton Framework
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091002
.
54.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Sondergaard
,
J.
,
2002
, “
‘Dace’—A ‘Matlab’ Kriging Toolbox
,” Technical University of Denmark, Lyngby, Denmark, Technical Report No.
IMM-TR-2002-12
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.17.3530&rep=rep1&type=pdf.
55.
Myers
,
R.
, and
Montgomery
,
D.
,
1995
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley
,
New York
.
56.
Owen
,
A. B.
,
1994
, “
Controlling Correlations in Latin Hypercube Samples
,”
J. Am. Stat. Assoc.
,
89
(
428
), pp.
1517
1522
.
57.
Johnson
,
M.
,
Moore
,
L.
, and
Ylvisaker
,
D.
,
1990
, “
Minimax and Maximin Distance Designs
,”
J. Stat. Plann. Inference
,
26
(
2
), pp.
131
148
.
58.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
59.
Viana
,
F. A. C.
,
Haftka
,
R. T.
, and
Steffen
,
V.
,
2009
, “
Multiple Surrogates: How Cross-Validation Errors Can Help Us to Obtain the Best Predictor
,”
Struct. Multidiscip. Optim.
,
39
(
4
), pp.
439
457
.
60.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley
,
Chichester, UK
.
61.
Tavakoli
,
R.
, and
Mohseni
,
S. M.
,
2014
, “
Alternating Active-Phase Algorithm for Multimaterial Topology Optimization Problems: A 115-line MATLAB implementation
,”
Struct. Multidiscip. Optim.
,
49
(
4
), pp.
621
642
.
62.
Liu
,
K.
, and
Tovar
,
A.
,
2014
, “
An Efficient 3D Topology Optimization Code Written in Matlab
,”
Struct. Multidiscip. Optim.
,
50
(
6
), pp.
1175
1196
.
63.
Tovar
,
A.
, and
Khandelwal
,
K.
,
2013
, “
Topology Optimization for Minimum Compliance Using a Control Strategy
,”
Eng. Struct.
,
48
, pp.
674
682
.
64.
Bandi
,
P.
,
Detwiler
,
D.
,
Schmiedeler
,
J. P.
, and
Tovar
,
A.
,
2015
, “
Design of Progressively Folding Thin-Walled Tubular Components Using Compliant Mechanism Synthesis
,”
Thin-Walled Struct.
,
95
, pp.
208
220
.
65.
Saxena
,
A.
, and
Ananthasuresh
,
G.
,
2000
, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
,
19
(
1
), pp.
36
49
.
You do not currently have access to this content.