An attractive but little explored field of application of the shape-memory technology is the area of rotary actuators, in particular for generating endless motion. This paper presents a miniature rotary motor based on shape-memory alloy (SMA) wires and overrunning clutches, which produces high output torque and unlimited rotation. The concept features an SMA wire tightly wound around a low-friction cylindrical drum to convert wire strains into large rotations within a compact package. The seesaw motion of the drum ensuing from repeated contraction–elongation cycles of the wire is converted into unidirectional motion of the output shaft by an overrunning clutch fitted between drum and shaft. Following a design process developed in a former paper, a six-stage prototype with size envelope of 48 × 22 × 30 mm is built and tested. Diverse supply strategies are implemented to optimize either the output torque or the speed regularity of the motor with the following results: maximum torque = 20 Nmm; specific torque = 6.31 × 10−4 Nmm/mm3; rotation per module = 15 deg/cycle; and free continuous speed = 4.4 rpm.

References

1.
Jani
,
J. M.
,
Leary
,
M.
,
Subic
,
A.
, and
Gibson
,
M. A.
,
2014
, “
A Review of Shape Memory Alloy Research, Applications and Opportunities
,”
Mater. Des.
,
56
(
4
), pp.
1078
1113
.
2.
Jacot
,
A. D.
,
Julien
,
G. J.
, and
Clingman
,
D. J.
,
2000
, “
Shape Memory Rotary Actuator
,”
U.S. Patent No. US6065934 A
.
3.
Keefe
,
A. C.
, and
Carman
,
G. P.
,
2000
, “
Thermomechanical Characterization of Shape Memory Alloy Torque Tube Actuators
,”
Smart Mater. Struct.
,
9
(
5
), pp.
665
672
.
4.
Mehrabi
,
R.
,
Kadkhodaei
,
M.
,
Andani
,
M. T.
, and
Elahinia
,
M.
,
2015
, “
Microplane Modeling of Shape Memory Alloy Tubes Under Tension, Torsion, and Proportional Tension–Torsion Loading
,”
J. Intell. Mater. Syst. Struct.
,
26
(
2
), pp.
144
155
.
5.
Park
,
B. H.
,
Shantz
,
M.
, and
Prinz
,
F.
,
2001
, “
Scalable Rotary Actuators With Embedded Shape Memory Alloy
,”
Proc. SPIE
,
4327
, pp.
78
87
.
6.
Jansen
,
S.
,
Breidert
,
J.
, and
Welp
,
E. G.
,
2004
, “
Positioning Actuator Based on Shape Memory Wires
,”
ACTUATOR 2004, 9th International Conference on New Actuators
, pp.
94
97
.
7.
Miga Motor Company
,
2015
, “
NanoMuscle NM70R-6P—Rotary Memory Metal Actuator
,” Miga Motor, Silverton, OR, accessed Jan. 19, 2015, http://www.migamotors.com/index.php?main_page=product_info&cPath=1&products_ id=29
8.
Toki Corporation
,
2015
, “
Biometal SmartServo RC-1
,”
Toki, Yokohama
,
Japan
, accessed Jan. 19, 2015, http://www.toki.co.jp/biometal
9.
Spinella
,
I.
,
Scirè Mammano
,
G.
, and
Dragoni
,
E.
,
2009
, “
Conceptual Design and Simulation of a Compact Shape Memory Actuator for Rotary Motion
,”
J. Mater. Eng. Perform.
,
18
(
5–6
), pp.
638
648
.
10.
Lan
,
C.-C.
,
Wang
,
J.-H.
, and
Fan
,
C.-H.
,
2009
, “
Optimal Design of Rotary Manipulators Using Shape Memory Alloy Wire Actuated Flexures
,”
Sens. Actuators A
,
153
(
2
), pp.
258
266
.
11.
Yoshida
,
E.
,
2002
, “
Continuous Rotary Actuator Using Shape Memory Alloy
,”
U.S. Patent No. US6484848 B2
.
12.
Pöhlau
,
F.
, and
Meier
,
H.
,
2004
, “
Extremely Compact High-Torque Drive With Shape Memory Actuators and Strain Wave Gear Wave Drive®
,”
ACTUATOR 2004 9th International Conference on New Actuators
, pp.
98
102
.
13.
Sharma
,
S. V.
,
Nayak
,
M. M.
, and
Dinesh
,
N. S.
,
2008
, “
Modelling, Design and Characterization of Shape Memory Alloy-Based Poly-Phase Motor
,”
Sens. Actuators A
,
147
(
2
), pp.
583
592
.
14.
Kim
,
W.
,
Utter
,
B.
,
Luntz
,
J.
, and
Brei
,
D.
,
2013
, “
Model-Based Memory Alloy Wire Ratchet Actuator Design
,”
ASME
Paper No. SMASIS2013-3333.
15.
Hwang
,
D.
,
Hattori
,
S.
, and
Higuchi
,
T.
,
2013
, “
A Bidirectional Rotary Actuator Using Shape Memory Alloy Wires
,” International Symposium on Ultraprecision Engineering and Nanotechnology (
ISUPEN 2013
), Tokyo, Japan, Mar. 13.
16.
Zhang
,
X. Y.
, and
Yan
,
X. J.
,
2012
, “
Continuous Rotary Motor Actuated by Multiple Segments of Shape Memory Alloy Wires
,”
J. Mater. Eng. Perform.
,
21
(
12
), pp.
2643
2649
.
17.
Hwang
,
D.
, and
Higuchi
,
T.
,
2014
, “
A Cycloidal Wobble Motor Driven by Shape Memory Alloy Wires
,”
Smart Mater. Struct.
,
23
(
5
), p.
055023
.
18.
Hwang
,
D.
, and
Higuchi
,
T.
,
2014
, “
A Rotary Actuator Using Shape Memory Alloy (SMA) Wires
,”
IEEE/ASME Trans. Mechatronics
,
19
(
5
), pp.
1625
1635
.
19.
Song
,
G.
,
2007
, “
Design and Control of a NiTi Wire Actuated Rotary Servo
,”
Smart Mater. Struct.
,
16
(
5
), pp.
1796
1801
.
20.
Scirè Mammano
,
G.
, and
Dragoni
,
E.
,
2011
, “
Modeling of Wire-on-Drum Shape Memory Actuators for Linear and Rotary Motion
,”
J. Intell. Mater. Syst. Struct.
,
22
(
11
), pp.
1129
1140
.
21.
Scirè Mammano
,
G.
, and
Dragoni
,
E.
,
2016
, “
Modelling and Validation of a Rotary Motor Combining Shape Memory Wires and Overrunning Clutches
,”
J. Intell. Mater. Syst. Struct.
,
27
(
14
), pp.
1976
1988
.
22.
Scirè Mammano
,
G.
, and
Dragoni
,
E.
,
2011
, “
Increasing Stroke and Output Force of Linear Shape Memory Actuators by Elastic Compensation
,”
Mechatronics
,
21
(
3
), pp.
570
580
.
23.
Berselli
,
G.
,
Scirè Mammano
,
G.
, and
Dragoni
,
E.
,
2014
, “
Design of a Dielectric Elastomer Cylindrical Actuator With Quasi-Constant Available Thrust: Modeling Procedure and Experimental Validation
,”
ASME J. Mech. Des.
,
136
(
12
), p.
125001
.
24.
Gowda
,
A.
,
2007
, “
Reliability Testing of Thermal Greases
,” Electronics Cooling, ITEM Publications, Philadelphia, PA, accessed Aug. 13, 2016, http://www.electronics-cooling.com/2007/11/reliability-testing-of-thermal-greases/
25.
Nespoli
,
A.
,
Besseghini
,
S.
,
Pittaccio
,
S.
,
Villa
,
E.
, and
Viscuso
,
S.
,
2010
, “
The High Potential of Shape Memory Alloys in Developing Miniature Mechanical Devices: A Review on Shape Memory Alloy Mini-Actuators
,”
Sens. Actuators A
,
158
(
1
), pp.
149
160
.
26.
Scirè Mammano
,
G.
, and
Dragoni
,
E.
,
2014
, “
Effect of Loading and Constraining Conditions on the Thermomechanical Fatigue Life of NiTi Shape Memory Wires
,”
J. Mater. Eng. Perform.
,
23
(
7
), pp.
2403
2411
.
You do not currently have access to this content.