Contact-aided compliant mechanisms (CCMs) are synthesized via the material mask overlay strategy (MMOS) to trace desired nonsmooth paths. MMOS employs hexagonal cells to discretize the design region and engages negative circular masks to designate material states. To synthesize CCMs, the modified MMOS presented herein involves systematic mutation of five mask parameters through a hill climber search to evolve not only the continuum topology but also to position the rigid, interacting surfaces within some masks. To facilitate analysis with contact, boundary smoothing is performed by shifting boundary nodes of the evolving continuum. Various geometric singularities are subdued via hexagonal cells, and the V-notches at the continuum boundaries are alleviated. Numerous hexagonal cells get morphed into concave subregions as a consequence. Large deformation finite-element formulation with mean-value coordinates based shape functions is used to cater to the generic hexagonal shapes. Contact analysis is accomplished via the Newton–Raphson (NR) iteration with load incrementing in conjunction with the augmented Lagrange multiplier method and active set constraints. An objective function based on Fourier shape descriptors (FSDs) is minimized subject to suitable design constraints. Two examples of path-generating CCMs are presented, their performance compared with a commercial software and fabricated to establish the efficacy of the proposed synthesis method.

References

1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
2.
Ananthasuresh
,
G.
,
Kota
,
S.
, and
Gianchandani
,
Y.
,
1994
, “
A Methodical Approach to the Design of Compliant Micromechanisms
,”
IEEE Solid-State Sensor and Actuator Workshop
, pp.
189
192
.
3.
Ananthasuresh
,
G.
,
Kota
,
S.
, and
Kikuchi
,
N.
,
1994
, “
Strategies for Systematic Synthesis of Compliant MEMS
,”
1994 ASME Winter Annual Meeting
, pp.
677
686
.
4.
Frecker
,
M.
,
Ananthasuresh
,
G.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
.
5.
Nishiwaki
,
S.
,
Frecker
,
M. I.
,
Min
,
S.
, and
Kikuchi
,
N.
,
1998
, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
,
42
(
3
), pp.
535
559
.
6.
Rozvany
,
G.
,
Zhou
,
M.
, and
Birker
,
T.
,
1992
, “
Generalized Shape Optimization Without Homogenization
,”
Struct. Optim.
,
4
(
3–4
), pp.
250
252
.
7.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
8.
Bendsoe
,
M.
,
1995
,
Methods for Optimization of Structural Topology, Shape and Material
, Springer, Berlin.
9.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
J. Struct. Mech.
,
25
(
4
), pp.
493
524
.
10.
Yin
,
L.
, and
Ananthasuresh
,
G.
,
2001
, “
Topology Optimization of Compliant Mechanisms With Multiple Materials Using a Peak Function Material Interpolation Scheme
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
49
62
.
11.
Saxena
,
R.
, and
Saxena
,
A.
,
2007
, “
On Honeycomb Representation and Sigmoid Material Assignment in Optimal Topology Synthesis of Compliant Mechanisms
,”
Finite Elements Anal. Des.
,
43
(
14
), pp.
1082
1098
.
12.
Rahmatalla
,
S.
, and
Swan
,
C. C.
,
2005
, “
Sparse Monolithic Compliant Mechanisms Using Continuum Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
62
(
12
), pp.
1579
1605
.
13.
Guest
,
J. K.
,
Prévost
,
J.
, and
Belytschko
,
T.
,
2004
, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
,
61
(
2
), pp.
238
254
.
14.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1
), pp.
227
246
.
15.
Wang
,
M. Y.
,
Chen
,
S.
,
Wang
,
X.
, and
Mei
,
Y.
,
2005
, “
Design of Multimaterial Compliant Mechanisms Using Level-Set Methods
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
941
956
.
16.
Langelaar
,
M.
,
2007
, “
The Use of Convex Uniform Honeycomb Tessellations in Structural Topology Optimization
,”
7th World Congress on Structural and Multidisciplinary Optimization, Seoul, South Korea
, pp.
21
25
.
17.
Talischi
,
C.
,
Paulino
,
G. H.
, and
Le
,
C. H.
,
2009
, “
Honeycomb Wachspress Finite Elements for Structural Topology Optimization
,”
Struct. Multidiscip. Optim.
,
37
(
6
), pp.
569
583
.
18.
Saxena
,
A.
,
2011
, “
Topology Design With Negative Masks Using Gradient Search
,”
Struct. Multidiscip. Optim.
,
44
(
5
), pp.
629
649
.
19.
Saxena
,
A.
, and
Sauer
,
R.
,
2012
, “
Combined Gradient-Stochastic Optimization With Negative Circular Masks for Large Deformation Topologies
,”
Int. J. Numer. Methods Eng.
,
93
(6), pp. 635–663.
20.
Saxena
,
A.
, and
Ananthasuresh
,
G.
,
2000
, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
,
19
(
1
), pp.
36
49
.
21.
Saxena
,
A.
, and
Ananthasuresh
,
G.
,
2001
, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
33
42
.
22.
Pedersen
,
C. B.
,
Buhl
,
T.
, and
Sigmund
,
O.
,
2001
, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
50
(
12
), pp.
2683
2705
.
23.
Saxena
,
A.
,
2005
, “
Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
745
752
.
24.
Ullah
,
I.
, and
Kota
,
S.
,
1997
, “
Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods
,”
ASME J. Mech. Des.
,
119
(
4
), pp.
504
510
.
25.
Zahn
,
C. T.
, and
Roskies
,
R. Z.
,
1972
, “
Fourier Descriptors for Plane Closed Curves
,”
IEEE Trans. Comput.
,
100
(
3
), pp.
269
281
.
26.
Rai
,
A. K.
,
Saxena
,
A.
, and
Mankame
,
N. D.
,
2007
, “
Synthesis of Path Generating Compliant Mechanisms Using Initially Curved Frame Elements
,”
ASME J. Mech. Des.
,
129
(
10
), pp.
1056
1063
.
27.
Rai
,
A. K.
,
Saxena
,
A.
, and
Mankame
,
N. D.
,
2010
, “
Unified Synthesis of Compact Planar Path-Generating Linkages With Rigid and Deformable Members
,”
Struct. Multidiscip. Optim.
,
41
(
6
), pp.
863
879
.
28.
Mankame
,
N. D.
, and
Ananthasuresh
,
G.
,
2004
, “
Topology Optimization for Synthesis of Contact-Aided Compliant Mechanisms Using Regularized Contact Modeling
,”
Comput. Struct.
,
82
(
15
), pp.
1267
1290
.
29.
Mankame
,
N.
, and
Ananthasuresh
,
G.
,
2007
, “
Synthesis of Contact-Aided Compliant Mechanisms for Non-Smooth Path Generation
,”
Int. J. Numer. Methods Eng.
,
69
(
12
), pp.
2564
2605
.
30.
Reddy
,
B. N.
,
Naik
,
S. V.
, and
Saxena
,
A.
,
2012
, “
Systematic Synthesis of Large Displacement Contact-Aided Monolithic Compliant Mechanisms
,”
ASME J. Mech. Des.
,
134
(
1
), p.
011007
.
31.
Saxena
,
A.
,
2008
, “
A Material-Mask Overlay Strategy for Continuum Topology Optimization of Compliant Mechanisms Using Honeycomb Discretization
,”
ASME J. Mech. Des.
,
130
(
8
), p.
082304
.
32.
Kumar
,
P.
, and
Saxena
,
A.
,
2013
, “
On Embedded Recursive Boundary Smoothing in Topology Optimization With Polygonal Mesh and Negative Masks
,”
iNaCoMM 2013
, IIT Roorkee, India, pp. 568–575.
33.
Kumar
,
P.
, and
Saxena
,
A.
,
2015
, “
On Topology Optimization With Embedded Boundary Resolution and Smoothing
,”
Struct. Multidiscip. Optim.
,
52
(
6
), pp.
1135
1159
.
34.
Corbett
,
C. J.
, and
Sauer
,
R. A.
,
2014
, “
NURBS-Enriched Contact Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
275
, pp.
55
75
.
35.
Floater
,
M. S.
,
2003
, “
Mean Value Coordinates
,”
Comput. Aided Geom. Des.
,
20
(
1
), pp.
19
27
.
36.
Sukumar
,
N.
, and
Malsch
,
E.
,
2006
, “
Recent Advances in the Construction of Polygonal Finite Element Interpolants
,”
Arch. Comput. Methods Eng.
,
13
(
1
), pp.
129
163
.
37.
Sukumar
,
N.
, and
Tabarraei
,
A.
,
2004
, “
Conforming Polygonal Finite Elements
,”
Int. J. Numer. Methods Eng.
,
61
(
12
), pp.
2045
2066
.
38.
Wriggers
,
P.
,
Computational Contact Mechanics
, Vol.
30167
,
Springer
, Berlin.
You do not currently have access to this content.