User behavior can determine over one third of the energy consumed in the residential energy market. Thus, user behavior has become a primary focus in sustainable mechanical device, appliance, and smart-energy systems design. Wasteful user behaviors, termed energy overuse failure modes (EOFMs), offer an opportunity for design engineers to direct users toward more sustainable behavior through design strategies. There are fundamentally two intervention strategies: (1) product or systems solution led or (2) behavioral led. Both are used to achieve increased sustainable user behavior. To ensure expected intervention outcomes, it is equally important to both identify the EOFMs as well as their underlying causes. However, the prevailing sustainable design approaches, such as design for sustainable behavior (DfSB) and ecodesign, depend on stated responses to elicit underlying causes of behavior. Consequently, the outcomes of these approaches are susceptible to response biases. In this paper, a new revealed behavior based framework is introduced to elicit underlying causes of EOFMs and to propose potential intervention strategies to address them. We focus on uncovering two underlying causes that correspond to the intervention strategies: (1) high energy consuming habits and (2) lack of energy awareness. In the proposed framework, user behavior categorization matrices are formulated using a two-phase user study approach with a request to lower the energy use in-between the phases. Based on the observed behavior, each EOFM is matrix categorized on two axes of change and correctness. With this data, the matrices thereby indicate the dominant underlying causes of EOFMs. The EOFMs and proposed interventions can then be prioritized based on the likelihood of occurrence, severity, magnitude or a combinatorial strategy to suit the sustainability objectives. A case study is presented with seven EOFMs that are found in typical day-to-day household electromechanical appliance use including inefficient appliance setup, inefficient selection, inefficient operation, standby energy consumption, and inefficient settings of conditions. Lack of user awareness of energy and power interactions among appliances and household settings is identified as the key underlying cause of considered EOFMs. Potential design solution strategies are also considered to overcome the EOFMs based on likelihoods, severities, and magnitudes, respectively. Each solution strategy carries a varying level of knowledgeable decision-making required of the user, compared with alternatively designing into the product or systems restrictions on use.

References

1.
Komiyama
,
H.
, and
Takeuchi
,
K.
,
2006
, “
Sustainability Science: Building a New Discipline
,”
Sustainability Sci.
,
1
(
1
), pp.
1
6
.
2.
Clark
,
W. C.
, and
Dickson
,
N. M.
,
2003
, “
Sustainability Science: The Emerging Research Program
,”
Proc. Natl. Acad. Sci.
,
100
(
14
), pp.
8059
8061
.
3.
Kajikawa
,
Y.
,
2008
, “
Research Core and Framework of Sustainability Science
,”
Sustainability Sci.
,
3
(
2
), pp.
215
239
.
4.
Graedel
,
T. E.
, and
Allenby
,
B. R.
,
1996
,
Design for Environment
,
Prentice Hall
,
Upper Saddle River, NJ
.
5.
Fitzgerald
,
D. P.
,
Herrmann
,
J. W.
, and
Schmidt
,
L. C.
,
2010
, “
A Conceptual Design Tool for Resolving Conflicts Between Product Functionality and Environmental Impact
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091006
.
6.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Choi
,
J. K.
,
Koho
,
M.
,
Zhao
,
F.
, and
Ramani
,
K.
,
2014
, “
Prioritizing Design for Environment Strategies Using a Stochastic Analytic Hierarchy Process
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071002
.
7.
Knight
,
P.
, and
Jenkins
,
J. O.
,
2009
, “
Adopting and Applying Eco-Design Techniques: A Practitioners Perspective
,”
J. Cleaner Prod.
,
17
(
5
), pp.
549
558
.
8.
Donnelly
,
K.
,
Beckett-Furnell
,
Z.
,
Traeger
,
S.
,
Okrasinski
,
T.
, and
Holman
,
S.
,
2006
, “
Eco-Design Implemented Through a Product-Based Environmental Management System
,”
J. Cleaner Prod.
,
14
(
15
), pp.
1357
1367
.
9.
Ramani
,
K.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
,
Sutherland
,
J.
,
Handwerker
,
C.
,
Choi
,
J. K.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Integrated Sustainable Life Cycle Design: A Review
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091004
.
10.
Anand
,
A.
, and
Wani
,
M. F.
,
2010
, “
Product Life-Cycle Modeling and Evaluation at the Conceptual Design Stage: A Digraph and Matrix Approach
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091010
.
11.
Goedkoop
,
M.
, and
Spriensma
,
R.
,
2000
,
The Eco-Indicator 99: A Damage Oriented Method for Life Cycle Impact Assessment, Methodology Report
, 3rd ed.,
Ministry of Housing, Spatial Planning and the Environment
,
Amersfoort, The Netherlands
.
12.
Lockton
,
D.
,
Harrison
,
D.
, and
Stanton
,
N.
,
2008
, “
Making the User More Efficient: Design for Sustainable Behavior
,”
Int. J. Sustainable Eng.
,
1
(
1
), pp.
3
8
.
13.
Daae
,
J.
, and
Boks
,
C.
,
2014
, “
A Classification of User Research Methods for Design for Sustainable Behavior
,”
J. Cleaner Prod.
,
106
, pp. 680–689.
14.
Guinée
,
J. B.
,
Huppes
,
G.
,
Huele
,
R.
,
Mulder
,
P.
,
van Oers
,
L.
,
Goedkopp
,
M. J.
, and
Jansen
,
A.
,
1991
, “
SimaPro–System for the Integral Environmental Analysis of Products (Manual and Diskettes)
,” Centre for Environmental Studies, Leiden University, Leiden and Pré Consultants, Rapenberg, The Netherlands.
15.
Bohm
,
M. R.
,
Haapala
,
K. R.
,
Poppa
,
K.
,
Stone
,
R. B.
, and
Tumer
, I
. Y.
,
2010
, “
Integrating Life Cycle Assessment Into the Conceptual Phase of Design Using a Design Repository
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091005
.
16.
Fitch
,
P. E.
, and
Joyce
,
S. C.
,
2004
, “
Life Cycle Energy Analysis as a Method for Material Selection
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
798
804
.
17.
Devanathan
,
S.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
, and
Ramani
,
K.
,
2010
, “
Integration of Sustainability Into Early Design Through the Function Impact Matrix
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081004
.
18.
Srivastava
,
J.
, and
Shu
,
L. H.
,
2013
, “
Affordances and Product Design to Support Environmentally Conscious Behavior
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101006
.
19.
She
,
J.
, and
MacDonald
,
E.
,
2014
, “
Priming Designers to Communicate Sustainability
,”
ASME J. Mech. Des.
,
136
(
1
), p.
011001
.
20.
Throne-Holst
,
H.
,
Stø
,
E.
, and
Strandbakken
,
P.
,
2007
, “
The Role of Consumption and Consumers in Zero Emission Strategies
,”
J. Cleaner Prod.
,
15
(
13
), pp.
1328
1336
.
21.
Peattie
,
K.
,
2010
, “
Green Consumption: Behavior and Norms
,”
Annu. Rev. Environ. Resour.
,
35
(
1
), pp.
195
228
.
22.
Nielsen
,
L.
,
1993
, “
How to Get the Birds in the Bush Into Your Hand: Results From a Danish Research Project on Electricity Savings
,”
Energy Policy
,
21
(
11
), pp.
1133
1144
.
23.
Peffer
,
T.
,
Perry
,
D.
,
Pritoni
,
M.
,
Aragon
,
C.
, and
Meier
,
A.
,
2013
, “
Facilitating Energy Savings With Programmable Thermostats: Evaluation and Guidelines for the Thermostat User Interface
,”
Ergonomics
,
56
(
3
), pp.
463
479
.
24.
Cor
,
E.
, and
Zwolinski
,
P.
,
2015
, “
A Protocol to Address User Behavior in the Eco-Design of Consumer Products
,”
ASME J. Mech. Des.
,
137
(
7
), p.
071413
.
25.
Oberender
,
C.
,
Weger
,
O.
,
Birkhofer
,
H.
, and
Sauer
,
J.
,
2001
, “
Ecological Design for the Usage Phase: An Interdisciplinary Approach to Design for Environment
,”
EcoDesign 2001: Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing
, Tokyo, Japan, Dec. 11–15, pp.
71
76
.
26.
Otto
,
K. N.
, and
Wood
,
K. L.
,
2001
,
Product Design: Techniques in Reverse Engineering, Systematic Design, and New Product Development
,
Prentice-Hall
,
Upper Saddle River, NJ
.
27.
Brace
,
I.
,
2008
,
Questionnaire Design: How to Plan, Structure and Write Survey Material for Effective Market Research
,
Kogan Page Publishers
,
London
.
28.
Telenko
,
C.
, and
Seepersad
,
C. C.
,
2014
, “
Probabilistic Graphical Modeling of Use Stage Energy Consumption: A Lightweight Vehicle Example
,”
ASME J. Mech. Des.
,
136
(
10
), p.
101403
.
29.
Selvefors
,
A.
,
Pedersen
,
K. B.
, and
Rahe
,
U.
,
2011
, “
Design for Sustainable Consumption Behaviour: Systematising the Use of Behavioral Intervention Strategies
,”
2011 Conference on Designing Pleasurable Products and Interfaces
, Milan, Italy, Article No. 3.
30.
Elias
,
E. W.
,
Dekoninck
,
E. A.
, and
Culley
,
S. J.
,
2007
, “
The Potential for Domestic Energy Savings Through Assessing User Behavior and Changes in Design
,”
EcoDesign 2007
, Dec. 10–13, Paper No. 14084.
31.
Bhamra
,
T.
,
Lilley
,
D.
, and
Tang
,
T.
,
2011
, “
Design for Sustainable Behavior: Using Products to Change Consumer Behavior
,”
Des. J.
,
14
(
4
), pp.
427
445
.
32.
Clear
,
A. K.
,
Hazas
,
M.
,
Morley
,
J.
,
Friday
,
A.
, and
Bates
,
O.
,
2013
, “
Domestic Food and Sustainable Design: A Study of University Student Cooking and Its Impacts
,”
ACM SIGCHI 2013
, pp.
2447
2456
.
33.
Oliveira
,
L.
,
Mitchell
,
V.
, and
Badni
,
K.
,
2012
, “
Cooking Behaviors: A User Observation Study to Understand Energy Use and Motivate Savings
,”
Work
,
41
(Suppl. 1), pp.
2122
2128
.
34.
Telenko
,
C.
, and
Seepersad
,
C. C.
,
2010
, “
A Methodology for Identifying Environmentally Conscious Guidelines for Product Design
,”
ASME J. Mech. Des.
,
132
(
10
), p.
091009
.
35.
Miller
,
J. M.
,
1995
, “
New Shades of Green
,” Master's thesis, Department of Mechanical Engineering, The University of Texas, Austin, TX.
36.
Bernstein
,
W. Z.
,
Ramanujan
,
D.
,
Zhao
,
F.
, and
Ramani
,
K.
,
2013
, “
Profiling Energy Consumption of Smartphone Users for Environmentally Efficient Business Decisions
,”
ASME
Paper No. DETC2013-13074.
37.
Horsky
,
D.
,
Nelson
,
P.
, and
Posavac
,
S. S.
,
2004
, “
Stating Preference for the Ethereal but Choosing the Concrete: How the Tangibility of Attributes Affects Attribute Weighting in Value Elicitation and Choice
,”
J. Consum. Psychol.
,
14
(
1–2
), pp.
132
140
.
38.
Ratner
,
R. K.
, and
Miller
,
D. T.
,
2001
, “
The Norm of Self-Interest and Its Affects on Social Action
,”
J. Pers. Soc. Psychol.
,
81
(
1
), pp.
5
16
.
39.
Druckman
,
A.
, and
Jackson
,
T.
,
2008
, “
Household Energy Consumption in the UK: A Highly Geographically and Socio-Economically Disaggregated Model
,”
Energy Policy
,
36
(
8
), pp.
3177
3192
.
40.
Vassileva
,
I.
,
Wallin
,
F.
, and
Dahlquist
,
E.
,
2012
, “
Analytical Comparison Between Electricity Consumption and Behavioral Characteristics of Swedish Households in Rented Apartments
,”
Appl. Energy
,
90
(
1
), pp.
182
188
.
41.
Kollmuss
,
A.
, and
Agyeman
,
J.
,
2002
, “
Mind the Gap: Why Do People Act Environmentally and What are the Barriers to Pro-Environmental Behavior?
,”
Environ. Educ. Res.
,
8
(
3
), pp.
239
260
.
42.
Katzev
,
R. D.
, and
Johnson
,
T. R.
,
1983
, “
A Social-Psychological Analysis of Residential Electricity Consumption: The Impact of Minimal Justification Techniques
,”
J. Econ. Psychol.
,
3
(
3
), pp.
267
284
.
43.
Katzev
,
R. D.
, and
Johnson
,
T. R.
,
1984
, “
Comparing the Effects of Monetary Incentives and Foot-in-the-Door Strategies in Promoting Residential Electricity Conservation
,”
J. Appl. Soc. Psychol.
,
14
(
1
), pp.
12
27
.
44.
Kennedy
,
E. H.
,
Beckley
,
T. M.
,
McFarlane
,
B. L.
, and
Nadeau
,
S.
,
2009
, “
Why We Don't ‘Walk the Talk’: Understanding the Environmental Values/Behavior Gap in Canada
,”
Hum. Ecol. Rev.
,
16
(
2
), pp.
151
160
.
45.
Lilley
,
D.
,
Lofthouse
,
V.
, and
Bhamra
,
T.
,
2005
, “
Toward Instinctive Sustainable Product Use
,”
2nd International Conference: Sustainability Creating the Culture
, Aberdeen, UK.
46.
Jelsma
,
J.
, and
Knot
,
M.
,
2002
, “
Designing Environmentally Efficient Services; A ‘Script’ Approach
,”
J. Sustainable Prod. Des.
,
2
(
3–4
), pp.
119
130
.
47.
Paetz
,
A. G.
,
Dütschke
,
E.
, and
Fichtner
,
W.
,
2012
, “
Smarthomes as a Means to Sustainable Energy Consumption: A Study of Consumer Perceptions
,”
J. Consum. Policy
,
35
(
1
), pp.
23
41
.
48.
Lockton
,
D.
,
Harrison
,
D.
, and
Stanton
,
N. A.
,
2010
, “
The Design With Intent Method: A Design Tool for Influencing User Behavior
,”
Appl. Ergon.
,
41
(
3
), pp.
382
392
.
49.
Wever
,
R.
,
van Kuijk
,
J.
, and
Boks
,
C.
,
2008
, “
User-Centred Design for Sustainable behavior
,”
Int. J. Sustainable Eng.
,
1
(
1
), pp.
9
20
.
50.
Daae
,
J. Z.
, and
Boks
,
C.
,
2011
, “
Reinforcing Preliminary Design Strategy Selection Guidelines With Insight From Fogg's Behavior Grid
,”
ACM PERSUASIVE‘11
, Paper No. 7.
51.
Srivastava
,
J.
, and
Shu
,
L. H.
,
2013
, “
Encouraging Resource-Conscious Behavior Through Product Design: The Principle of Discretization
,”
ASME J. Mech. Des.
,
135
(
6
), p.
061002
.
52.
Lilley
,
D.
, and
Wilson
,
G. T.
,
2013
, “
Integrating Ethics Into Design for Sustainable Behaviour
,”
J. Des. Res.
,
11
(
3
), pp.
278
299
.
53.
Abrahamse
,
W.
,
Steg
,
L.
,
Vlek
,
C.
, and
Rothengatter
,
T.
,
2005
, “
A Review of Intervention Studies Aimed at Household Energy Conservation
,”
J. Environ. Psychol.
,
25
(
3
), pp.
273
291
.
54.
Delmas
,
M. A.
,
Fischlein
,
M.
, and
Asensio
,
O. I.
,
2013
, “
Information Strategies and Energy Conservation Behavior: A Meta-Analysis of Experimental Studies From 1975 to 2012
,”
Energy Policy
,
61
, pp.
729
739
.
55.
Geelen
,
D.
,
Reinders
,
A.
, and
Keyson
,
D.
,
2013
, “
Empowering the End-User in Smart Grids: Recommendations for the Design of Products and Services
,”
Energy Policy
,
61
, pp.
151
161
.
56.
Withanage
,
C.
,
Ashok
,
R.
,
Hölttä-Otto
,
K.
, and
Otto
,
K.
,
2014
, “
Identifying and Categorizing Opportunities for Design for Sustainable User Behavior
,”
ASME
Paper No. DETC2014-34798.
57.
Kmenta
,
S.
, and
Ishii
,
K.
,
2004
, “
Scenario-Based Failure Modes and Effects Analysis Using Expected Cost
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
1027
1035
.
58.
Keese
,
D. A.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2009
, “
Product Flexibility Measurement With Enhanced Change Modes and Effects Analysis (CMEA)
,”
Int. J. Mass Customisation
,
3
(
2
), pp.
115
145
.
59.
Tilstra
,
A. H.
,
Backlund
,
P. B.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2008
, “
Industrial Case Studies in Product Flexibility for Future Evolution: An Application and Evaluation of Design Guidelines
,”
ASME
Paper No. DETC2008-49370.
60.
Keese
,
D. A.
,
Tilstra
,
A. H.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2007
, “
Empirically-Derived Principles for Designing Products With Flexibility for Future Evolution
,”
ASME
Paper No. DETC2007-35695.
61.
Rajan
,
P. P.
,
Van Wie
,
M.
,
Campbell
,
M. I.
,
Wood
,
K. L.
, and
Otto
,
K. N.
,
2005
, “
An Empirical Foundation for Product Flexibility
,”
Des. Stud.
,
26
(
4
), pp.
405
438
.
62.
Tilstra
,
A. H.
,
Backlund
,
P. B.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2015
, “
Principles for Designing Products With Flexibility for Future Evolution
,”
Int. J. Mass Customisation
,
5
(
1
), pp.
22
54
.
63.
Embrey
,
D.
,
2000
, “
Task Analysis Techniques
,”
Human Reliability Associates Ltd.
, Lancashire, UK.
64.
Bliek
,
F.
,
van den Noort
,
A.
,
Roossien
,
B.
,
Kamphuis
,
R.
,
de Wit
,
J.
,
van der Velde
,
J.
, and
Eijgelaar
,
M.
,
2010
, “
PowerMatching City, a Living Lab Smart Grid Demonstration
,”
IEEE ISGT Europe
2010
.
65.
Kolhe
,
M.
,
2012
, “
Smart Grid: Charting a New Energy Future: Research, Development, and Demonstration
,”
Electr. J.
,
25
(
2
), pp.
88
93
.
66.
Withanage
,
C.
,
Ashok
,
R.
,
Yuen
,
C.
, and
Otto
,
K.
,
2014
, “
A Comparison of the Popular Home Automation Technologies
,” Innovative Smart Grid Technologies-Asia
(ISGT Asia)
, pp.
600
605
.
67.
ASHRAE
,
2001
,
ASHRAE Handbook: Fundamental
,
American Society of Heating, Refrigerating and Air Conditioning Engineers
,
Atlanta, GA
.
68.
NEA
,
2014
, “Test Report,”
National Environment Agency
, Singapore.
You do not currently have access to this content.