Recently, the environmental impact of wind farms has been receiving increasing attention. As land is more extensively exploited for onshore wind farms, they are more likely to be in proximity with human dwellings, increasing the likelihood of a negative health impact. Noise generation and propagation remain an important concern for wind farm's stakeholders, as compliance with mandatory noise limits is an integral part of the permitting process. In contrast to previous work that included noise only as a design constraint, this work presents continuous-location models for layout optimization that take noise and energy as objective functions, in order to fully characterize the design and performance spaces of the wind farm layout optimization (WFLOP) problem. Based on Jensen's wake model and ISO-9613-2 noise calculations, single- and multi-objective genetic algorithms (GAs) are used to solve the optimization problem. Results from this bi-objective optimization model illustrate the trade-off between energy generation and noise production by identifying several key parts of Pareto frontiers. In particular, it was observed that different regions of a Pareto front correspond to markedly different turbine layouts. The implications of noise regulation policy—in terms of the actual noise limit—on the design of wind farms are discussed, particularly in relation to the entire spectrum of design options.

References

1.
Canadian Wind Energy Association
, 2008, “
Wind Vision 2025
,” Canadian Wind Energy Association, Technical Report No. 1.
2.
American Wind Energy Association
,
2012
, “
Industry Statistics
,” American Wind Energy Association, U.S. Wind Industry Annual, Market Report 2012 No. 1.
3.
Energy Information Administration
,
2012
, “
Annual Energy Review 2011
,” Office of Energy Statistics, Department of Energy, Technical Report No. DOE/EIA-0384.
4.
Chief Medical Officer of Health (CMOH)
,
2010
, “
The Potential Health Impact of Wind Turbines
,” Ministry of Health and Long-Term Care, Government of Ontario, Canada, Technical Report No. 014894.
5.
Ministry of the Environment
,
2008
, “
Noise Guidelines for Wind Farms
,” Ministry of the Environment, Government of Canada, Technical Report No. 4709e.
6.
Ministry of the Environment
,
2011
, “
Compliance Protocol for Wind Turbine Noise—Guideline for Acoustic Assessment and Measurement
,” Ministry of the Environment, Government of Canada, Technical Report No. 8540e.
7.
Mosetti
,
G.
,
Poloni
,
C.
, and
Diviacco
,
B.
,
1994
, “
Optimization of Wind Turbine Positioning in Large Wind Farms by Means of a Genetic Algorithm
,”
J. Wind Eng. Ind. Aerodyn.
,
51
(
1
), pp.
105
116
.10.1016/0167-6105(94)90080-9
8.
Grady
,
S.
,
2005
, “
Placement of Wind Turbines Using Genetic Algorithms
,”
Renewable Energy
,
30
(
2
), pp.
259
270
.10.1016/j.renene.2004.05.007
9.
Fagerfjäll
,
P.
,
2010
, “
Optimizing Wind Farm Layouts: More Bang for the Buck Using Mixed Integer Linear Programming
,” Master's thesis, Chalmers University of Technology, Gothenburg University, Gothenburg, Sweden.
10.
Chowdhury
,
S.
,
Zhang
,
J.
,
Messac
,
A.
, and
Castillo
,
L.
,
2011
, “
Characterizing the Influence of Land Configuration on the Optimal Wind Farm Performance
,”
Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, ASME
,
New York
.
11.
Jensen
,
N.
,
1983
, “
A Note on Wind Generator Interaction
,” Riso National Laboratory, Technical Report No. RISO-M-2411.
12.
Holland
,
J. H.
,
1975
,
Adaptation in Natural and Artificial Systems
,
University of Michigan
,
Ann Arbour, MI
.
13.
Emami
,
A.
, and
Noghreh
,
P.
,
2010
, “
New Approach on Optimization in Placement of Wind Turbines Within Wind Farm by Genetic Algorithms
,”
Renewable Energy
,
35
(
7
), pp.
1559
1564
.10.1016/j.renene.2009.11.026
14.
Serrano-González
,
J.
,
Gonzalez Rodriguez
,
A. G.
,
Mora
,
J. C.
,
Santos
,
J. R.
, and
Payan
,
M. B.
,
2010
, “
Optimization of Wind Farm Turbines Layout Using an Evolutive Algorithm
,”
Renewable Energy
,
35
(
8
), pp.
1671
1681
.10.1016/j.renene.2010.01.010
15.
Kusiak
,
A.
, and
Song
,
Z.
,
2010
, “
Design of Wind Farm Layout for Maximum Wind Energy Capture
,”
Renewable Energy
,
35
(
3
), pp.
685
694
.10.1016/j.renene.2009.08.019
16.
Réthoré
,
P.-E.
,
Fuglsang
,
P.
,
Larsen
,
G. C.
,
Buhl
,
T.
,
Larsen
,
T. J.
, and
Madsen
,
H. A.
,
2013
, “
TOPFARM: Multi-Fidelity Optimization of Wind Farms
,”
Wind Energy
. Available at: http://onlinelibrary.wiley.com/doi/10.1002/we.1667/abstract.10.1002/we.1667
17.
Saavedra-Moreno
,
B.
,
Salcedo Sanz
,
S.
,
Paniagua Tineo
,
A.
,
Prieto
,
L.
, and
Portilla Figueras
,
A.
,
2011
, “
Seeding Evolutionary Algorithms With Heuristics for Optimal Wind Turbines Positioning in Wind Farms
,”
Renewable Energy
,
36
(
11
), pp.
2838
2844
.10.1016/j.renene.2011.04.018
18.
Chowdhury
,
S.
,
Zhang
,
J.
,
Messac
,
A.
, and
Castillo
,
L.
,
2012
, “
Unrestricted Wind Farm Layout Optimization (UWFLO): Investigating Key Factors Influencing the Maximum Power Generation
,”
Renewable Energy
,
38
(
1
), pp.
16
30
.10.1016/j.renene.2011.06.033
19.
Şişbot
,
S.
,
Turgut
,
Ö.
,
Tunç
,
M.
, and
Çamdali
,
Ü.
,
2010
, “
Optimal Positioning of Wind Turbines on Gökçeada Using Multi-Objective Genetic Algorithm
,”
Wind Energy
,
13
(
4
), pp.
297
306
.10.1002/we.339
20.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of the IEEE International Conference on Neural Networks, IEEE
, Vol.
4
, pp.
1942
1948
.
21.
Wan
,
C.
,
Wang
,
J.
,
Yang
,
G.
, and
Zhang
,
X.
,
2010
, “
Optimal Micro-Siting of Wind Farms by Particle Swarm Optimization
,”
Advances in Swarm Intelligence
, Vol.
6145
(
Lecture Notes in Computer Science), Springer
,
Berlin, Heidelberg
, pp.
198
205
.
22.
Bilbao
,
M.
, and
Alba
,
E.
,
2009
, “
Simulated Annealing for Optimization of Wind Farm Annual Profit
,”
2nd International Symposium on Logistics and Industrial Informatics, IEEE
, pp.
1
5
.
23.
Du Pont
,
B. L.
, and
Cagan
,
J.
,
2010
, “
An Extended Pattern Search Approach to Wind Farm Layout Optimization
,”
Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
ASME
,
New York
, Paper No. DETC2010-28748.10.1115/DETC2010-28748
24.
Du Pont
,
B. L.
, and
Cagan
,
J.
,
2012
, “
An Extended Pattern Search Approach to Wind Farm Layout Optimization
,”
ASME J. Mech. Des.
,
134
(
8
), p.
081002
.10.1115/1.4006997
25.
Donovan
,
S.
,
Nates
,
G.
,
Waterer
,
H.
, and
Archer
,
R.
,
2008
, “
Mixed Integer Programming Models for Wind Farm Design
,” Columbia University, New York. Available at: http://coral.ie.lehigh.edu/~jeff/mip-2008/.
26.
Donovan
,
S.
,
2006
, “
An Improved Mixed Integer Programming Model for Wind Farm Layout Optimisation
,”
Proceedings of the 41st Annual Conference of the Operations Research Society
, pp.
143
151
.
27.
IBM
,
2012
, IBM ILOG CPLEX Optimizer.
28.
Turner
,
S.
,
Romero
,
D.
,
Zhang
,
P.
,
Amon
,
C.
, and
Chan
,
T.
,
2014
, “
A New Mathematical Programming Approach to Optimize Wind Farm Layouts
,”
Renewable Energy
,
63
, pp.
674
680
.10.1016/j.renene.2013.10.023
29.
Zhang
,
P. Y.
,
Romero
,
D. A.
,
Beck
,
J. C.
, and
Amon
,
C. H.
,
2013
, “
Solving Wind Farm Layout Optimization With Mixed and Integer Programming and Constraint Programming
,”
Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems
,
C.
Gomes
, and
M.
Sellmann
, eds., Vol.
7874
(
Lecture Notes in Computer Science), Springer
,
Berlin, Heidelberg
, pp.
284
299
.
30.
Manwell
,
J. F.
,
McGowan
,
J. G.
, and
Rogers
,
A. L.
,
2009
, “
Aerodynamics of Wind Turbines
,”
Wind Energy Explained
,
Wiley
,
New York
, Chap. 3.
31.
Réthoré
,
P.-E.
,
2009
, “
Wind Turbine Wakes in Atmospheric Turbulence
,” PhD thesis, Aalborg University, Aalborg, Denmark.
32.
International Organization for Standardization
, Acoustics—Attenuation of Sound During Propagation Outdoors. Part 2: General Method of Calculation.
33.
Delta Acoustics & Electronics
,
2006
, “
Nord2000—Comprehensive Outdoor Sound Propagation Model. Part 1: Propagation in an Atmosphere Without Significant Refraction
,” Nordic Noise Group & Nordic Road Directorates, Technical Report No. AV 1849/00.
34.
Delta Acoustics & Electronics
,
2009
, “
Validation of the Nord2000 Propagation Model for Use on Wind Turbine Noise
,” Energinet, Denmark, Technical Report No. AV 1236/09.
35.
Gandibleux
,
X.
,
Sevaux
,
M.
,
Sörensen
,
K.
, and
T'kindt
,
V.
, eds.,
2004
,
Metaheuristics for Multiobjective Optimisation
, Vol.
535
(
Lecture Notes in Economics and Mathematical Systems), Springer
,
Berlin, Heidelberg
.
36.
Zitzler
,
E.
, and
Thiele
,
L.
,
1999
, “
Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach
,”
IEEE Trans. Evol. Comput.
,
3
(
4
), pp.
257
271
.
37.
Zitzler
,
E.
,
Laumanns
,
M.
, and
Thiele
,
L.
,
2001
, “
SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization
,”
Proceedings of EUROGEN—Evolutionary Methods for Design, Optimisation and Control With Application to Industrial Problems
,
K.
Giannakoglou
,
D. T.
Tsahalis
,
J.
Periaux
, and
K. D.
Papailiou
, eds., pp.
95
100
.
38.
Srinivas
,
N.
, and
Deb
,
K.
,
1994
, “
Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
,”
Evol. Comput.
,
2
(
3
), pp.
221
248
.10.1162/evco.1994.2.3.221
39.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
40.
Zitzler
,
E.
,
Deb
,
K.
, and
Thiele
,
L.
,
2000
, “
Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
,”
Evol. Comput.
,
8
(
2
), pp.
173
195
.10.1162/106365600568202
41.
AWS Truepower
,
2011
, Openwind.
42.
AWS Truepower
,
2010
, “
Openwind Theoretical Basis and Validation
,” Albany, NY, Technical Report No. 1.3.
43.
Archer
,
R.
,
Nates
,
G.
,
Donovan
,
S.
, and
Waterer
,
H.
,
2011
, “
Wind Turbine Interference in a Wind Farm Layout Optimization Mixed Integer Linear Programming Model
,”
Wind Eng.
,
35
(
2
), pp.
165
175
.10.1260/0309-524X.35.2.165
44.
Du Pont
,
B. L.
,
Cagan
,
J.
, and
Moriarty
,
P.
,
2012
, “
Optimization of Wind Farm Layout and Wind Turbine Geometry Using a Multi-Level Extended Pattern Search Algorithm that Accounts for Variation in Wind Shear Profile Shape
,”
ASME
International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, ASME
,
New York
, Paper No. DETC2012-70290.10.1115/DETC2012-70290
45.
Chowdhury
,
S.
,
Messac
,
A.
,
Zhang
,
J.
,
Castillo
,
L.
, and
Lebron
,
J.
,
2010
, “
Optimizing the Unrestricted Placement of Turbines of Differing Rotor Diameters in a Wind Farm for Maximum Power Generation
,” Proceedings of the
ASME
2010 International Design Engineering Technical Conference & Computers and Information in Engineering Conference IDETC/CIE 2010, ASME
,
New York
, pp.
1
16
, Paper No. DETC2010-29129.10.1115/DETC2010-29129
46.
Dimcev
,
V.
,
Najdenkoski
,
K.
,
Stoilkov
, V
.
, and
Kokolanski
,
Z.
,
2011
, “
Wind Energy Potential Assessment in the Republic of Macedonia
,”
J. Energy Power Eng.
,
5
(
4
), pp.
324
330
.
You do not currently have access to this content.