This paper presents a continuum-based approach for multi-objective topology optimization of multicomponent structures. Objectives include minimization of compliance, weight, and cost of assembly and manufacturing. Design variables are partitioned into two main groups: those pertaining to material allocation within a design domain (base topology problem), and those pertaining to decomposition of a monolithic structure into multiple components (joint allocation problem). Generally speaking, the two problems are coupled in the sense that the decomposition of an optimal monolithic structure is not always guaranteed to produce an optimal multicomponent structure. However, for spot-welded sheet-metal structures (such as those often found in automotive applications), certain assumptions can be made about the performance of a monolithic structure that favor the adoption of a two-stage approach that decouples the base topology and joint allocation problems. A multi-objective genetic algorithm (GA) is used throughout the studies in this paper. While the problem decoupling in two-stage approaches significantly reduces the size of the search space and allows better performance of the GA, the size of the search space can still be quite enormous in the second stage. To further improve the performance, a new mutation operator based on decomposition templates and localized joints morphing is proposed. A cantilever-loaded structure is used to study and compare various setups of single and two-stage GA approaches and establish the merit of the proposed GA operators. The approach is then applied to a simplified model of an automotive vehicle floor subject to global bending loading condition.

References

1.
Lyu
,
N.
, and
Saitou
,
K.
,
2005
, “
Topology Optimization of Multi-Component Structures Via Decomposition-Based Assembly Synthesis
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
170
183
.10.1115/1.1814671
2.
Yildiz
,
A.
, and
Saitou
,
K.
,
2011
, “
Topology Synthesis of Multi-Component Structural Assemblies in Continuum Domains
,”
ASME J. Mech. Des.
,
133
, p.
011008
.10.1115/1.4003038
3.
Zhou
,
Z.
,
Hamza
,
K.
, and
Saitou
,
K.
,
2011
, “
Multi-Objective Topology Optimization of Spot-Welded Planar Multi-Component Continuum Structures
,”
9th World Congress on Structural and Multidisciplinary Optimization
, Shizuoka, Japan.
4.
Dorn
,
W. C.
,
Gomory
,
R. E.
, and
Greenberg
,
H. J.
,
1964
, “
Automatic Design of Optimal Structures
,”
J. Mec.
,
3
, pp.
25–52
.
5.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
, pp.
197
224
.10.1016/0045-7825(88)90086-2
6.
Bendsøe
,
M. P.
,
Ben-Tal
,
A.
, and
Zowe
,
J.
,
1994
, “
Optimization Methods for Truss Geometry and Topology Design
,”
Struct. Optim.
,
7
, pp.
141
159
.10.1007/BF01742459
7.
Kirsch
,
U.
,
1989
, “
Optimal Topologies of Structures
,”
Appl. Mech. Rev.
,
42
(
8
), pp.
223
238
.10.1115/1.3152429
8.
Rozvany
,
G. I. N.
,
Bendsøe
,
M. P.
, and
Kirsch.
U.
,
1995
, “
Layout Optimization of Structures
,”
Appl. Mech. Rev.
,
48
, pp.
41
119
.10.1115/1.3005097
9.
Shea
,
K.
,
Cagan
,
J.
, and
Fenves
,
S. J.
,
1997
, “
A Shape Annealing Approach to Optimal Truss Design With Dynamic Grouping of Members
,”
ASME J. Mech. Des.
,
119
(
3
), pp.
388
394
.10.1115/1.2826360
10.
Reddy
,
G.
, and
Cagan
,
J.
,
1995
, “
Optimally Directed Truss Topology Generation Using Shape Annealing
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
206
209
.10.1115/1.2826110
11.
Gil
,
L.
, and
Andreu
,
A.
,
2001
, “
Shape and Cross-Section Optimisation of a Truss Structure
,”
Comput. Struct.
,
79
, pp.
681
689
.10.1016/S0045-7949(00)00182-6
12.
Pedersen
,
N. L.
, and
Nielsen
,
A. K.
,
2003
, “
Optimization of Practical Trusses With Constraints on Eigenfrequencies, Displacements, Stresses, and Buckling
,”
Struct. Multidiscip. Optim.
,
25
(
5–6
), pp.
436
445
.10.1007/s00158-003-0294-7
13.
Suzuki
,
K.
, and
Kikuchi
,
N.
,
1991
, “
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
93
, pp.
291
318
.10.1016/0045-7825(91)90245-2
14.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.10.1016/0045-7949(93)90035-C
15.
Chapman
,
C.
,
Saitou
,
K.
, and
Jakiela
,
M.
,
1994
, “
Genetic Algorithms as an Approach to Configuration and Topology Design
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1005
1012
.10.1115/1.2919480
16.
Chapman
,
C. D.
, and
Jakiela
,
M. J.
,
1996
, “
Genetic Algorithm-Based Structural Topology Design With Compliance and Topology Simplification Considerations
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
89
98
.10.1115/1.2826862
17.
Diaz
,
A. R.
, and
Kikuchi
,
N.
,
1992
, “
Solutions to Shape and Topology Eigenvalue Optimization Using a Homogenization Method
,”
Int. J. Numer. Methods Eng.
,
35
, pp.
487
1502
.
18.
Ma
,
Z.-D.
,
Kikuchi
,
N.
, and
Cheng
,
H.-C.
,
1995
, “
Topological Design for Vibrating Structures
,”
Comput. Methods Appl. Mech. Eng.
,
121
(
1–4
), pp.
259
280
.10.1016/0045-7825(94)00714-X
19.
Mayer
,
R. R.
,
Kikuchi
,
N.
, and
Scott
,
R. A.
,
1996
, “
Application of Topological Optimization Techniques to Structural Crashworthiness
,”
Int. J. Numer. Methods Eng.
,
39
(
8
), pp.
1383
1403
.10.1002/(SICI)1097-0207(19960430)39:8<1383::AID-NME909>3.0.CO;2-3
20.
Luo
,
J.
,
Gea
,
H. C.
, and
Yang
,
R. J.
,
2000
, “
Topology Optimization for Crush Design
,”
8th AIAA/USAF/NASA/ ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Long Beach, CA, Paper No. AIAA-2000-4770.
21.
Mayer
,
R. R.
,
Maurer
,
D.
, and
Bottcher
,
C.
,
2000
, “
Application of Topological Optimization Program to the Danner Test Simulation
,” ASME DETC 2000/DAC-14292.
22.
Gea
,
H. C.
, and
Luo
,
J.
,
2001
, “
Design for Energy Absorption: A Topology Optimization Approach
,” ASME DETC2001/DAC-21060.
23.
Soto
,
C. A.
,
2001
, “
Optimal Structural Topology Design for Energy Absorption: A Heurtistic Approach
,” ASME DETC 2001/DAC-21126.
24.
Soto
,
C. A.
,
2001
, “
Structural Topology for Crashworthiness Design by Matching Plastic Strain and Stress Levels
,” ASME IMECE 2001 /AMD-25455.
25.
Bae
,
K.-K.
,
Wang
,
S. W.
, and
Choi
,
K. K.
,
2002
, “
Reliability-Based Topology Optimization With Uncertainties
,”
China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems
, Busan, Korea, pp.
647
653
.
26.
Kharmanda
,
G.
,
Olhoff
,
N.
,
Mohamed
,
A.
, and
Lemaire
,
M.
,
2004
, “
Reliability-Based Topology Optimization
,”
Struct. Multidiscip. Optim.
,
26
(
5
), pp.
295
307
.10.1007/s00158-003-0322-7
27.
Johanson
,
R.
,
Kikuchi
,
N.
, and
Papalambros
,
P.
,
1994
, “
Simultaneous Topology and Material Microstructure Design
,”
Advances in Structural Optimization
,
Topping
,
B. H. V.
, and
Papadrakakis
,
M.
, eds.,
Civil-Comp Ltd.
,
Edinburgh, Scotland
, pp.
143
149
.
28.
Jiang
,
T.
, and
Chirehdast
,
M.
,
1997
, “
A Systems Approach to Structural Topology Optimization: Designing Optimal Connections
,”
ASME J. Mech. Des.
,
119
(
1
), pp.
40
47
.10.1115/1.2828787
29.
Chickermane
,
H.
, and
Gea
,
H. C.
,
1997
, “
Design of Multi-Component Structural System for Optimal Layout Topology and Joint Locations
,”
Eng. Comput.
,
13
, pp.
235
243
.10.1007/BF01200050
30.
Li
,
Q.
,
Steven
,
G. P.
, and
Xie
,
Y. M.
,
2001
, “
Evolutionary Structural Optimization for Connection Topology Design of Multi-Component Systems
,”
Eng. Comput.
,
18
(
3–4
), pp.
460
479
.10.1108/02644400110387127
31.
Yetis
,
A.
, and
Saitou
,
K.
,
2002
, “
Decomposition-Based Assembly Synthesis Based on Structural Considerations
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
593
601
.10.1115/1.1519276
32.
Lyu
,
N.
, and
Saitou
,
K.
,
2003
, “
Decomposition-Based Assembly Synthesis for Structural Stiffness
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
452
463
.10.1115/1.1582879
33.
Lyu
,
N.
, and
Saitou
,
K.
,
2005
, “
Decomposition-Based Assembly Synthesis of a Three-Dimensional Body-in-White Model for Structural Stiffness
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
34
48
.10.1115/1.1799551
34.
Lyu
,
N.
, and
Saitou
,
K.
,
2006
, “
Decomposition-Based Assembly Synthesis of Space Frame Structures Using Joint Library
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
57
65
.10.1115/1.1909203
35.
Sigmund
,
O.
,
2011
, “
On the Usefulness of Non-Gradient Approaches in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
43
, pp.
589
596
.10.1007/s00158-011-0638-7
36.
Boothroyd
,
G.
,
Dewhurst
,
P.
, and
Knight
,
W.
,
1994
,
Product Design for Manufacturing and Assembly
,
Marcel Dekker
,
New York
.
37.
Coello
,
C.
,
Veldhuizen
,
D.
, and
Lamont
,
G.
,
2002
,
Evolutionary Algorithms for Solving Multi-Objective Problems
,
Kluwer Academic Publishers
,
MA
.
38.
Deb
,
K.
,
Pratab
,
A.
,
Agrawal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
39.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscip. Optim.
,
21
, pp.
120
127
.10.1007/s001580050176
40.
Michalewiz
,
Z.
, and
Fogel
,
D. B.
,
2000
,
How to Solve it: Modern Heuristics
,
Springer-Verlag
,
Berlin Heidelberg, New York
.
41.
Xu
,
S.
, and
Deng
,
X.
,
2004
, “
An Evaluation of Simplified Finite Element Models for Spot-Welded Joints
,”
Finite Elem. Anal. Design
,
40
, pp.
1175
1194
.10.1016/j.finel.2003.08.006
42.
Zitler
,
E.
, and
Thiele
,
L.
,
1999
, “
Multi-Objective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach
,”
IEEE Trans. Evol. Comput.
,
3
(
4
), pp.
257
271
.10.1109/4235.797969
43.
Hamza
,
K.
,
Aly
,
M.
, and
Hegazi
,
H.
,
2013
, “
An Explicit Level-Set Approach for Structural Topology Optimization
,” ASME DETC 2013/DAC-12155.
You do not currently have access to this content.