This paper presents a new approach to solve multiobjective optimization problems under uncertainty. Unlike the existing state-of-the-art, where means/variances of the objectives are used to ensure optimality, we employ a distributional formulation. The proposed formulations are based on joint probability, i.e., probability that all objectives are simultaneously bound by certain design thresholds under uncertainty. For minimization problems, these thresholds can be viewed as the desired upper bounds on the individual objectives. The tradeoffs are illustrated using the so-called decision surface, which is the surface of maximized joint probabilities for a set of design thresholds. Two optimization formulations to generate the decision surface are proposed, which provide the designer with the distinguishing capability that is not available in the existing literature, namely, decision making under uncertainty, while ensuring joint objective performance: (1) Maximum probability design: Given a set of thresholds (preferences within each objective), find a design that maximizes the joint probability while using a probabilistic aggregation as against an ambiguous weight-based method. (2) Optimum threshold design: Given a designer-specified joint probability, find a set of thresholds that satisfy the joint probability specification while allowing for a specification of preferences among the objectives.

References

1.
Siddall
,
J. N.
, 1983,
Probabilistic Engineering Design: Principles and Applications
,
Marcel Dekker
,
New York
.
2.
Vadde
,
S.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 1994, “
Compromise Decision Support Problems for Hierarchical Design Involving Uncertainty
,”
Comput. Struct.
,
52
(
4
), pp.
645
658
.
3.
Allen
,
J. K.
,
Seepersad
,
C.
,
Choi
,
H.
, and
Mistree
,
F.
, 2006, “
Robust Design for Multiscale and Multidisciplinary Applications
,”
ASME J. Mech. Des.
,
128
, pp.
832
843
.
4.
Otto
,
K. N.
, and
Wood
,
K. L.
, 2001,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
5.
Du
,
X.
, and
Chen
,
W.
, 2000, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
385
394
.
6.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
7.
Yin
,
X.
, and
Chen
,
W.
, 2008, “
A Hierarchical Statistical Sensitivity Analysis Method for Complex Engineering Systems Design
,”
ASME J. Mech. Des.
,
130
(
7
), p.
071402
.
8.
Chiralaksanakul
,
A.
, and
Mahadevan
,
S.
, 2005, “
First Order Approximation Methods in Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
127
, pp.
851
857
.
9.
Liu
,
H.
,
Chen
,
W.
,
Kokkolaras
,
M.
,
Papalambros
,
P. Y.
, and
Kim
,
H. M.
, 2006, “
Probabilistic Analytical Target Cascading—A Moment Matching Formulation for Multilevel Optimization Under Uncertainty
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
991
1000
.
10.
Kokkolaras
,
M.
,
Mourelatos
,
Z. P.
, and
Papalambros
,
P. Y.
, 2006, “
Design Optimization of Hierarchically Decomposed Multilevel Systems Under Uncertainty
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
503
508
.
11.
Chan
,
K.-Y.
,
Skerlos
,
S.
, and
Papalambros
,
P. Y.
, 2006, “
Monotonicity and Active Set Strategies in Probabilistic Design Optimization
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
893
900
.
12.
Gunawan
,
S.
, and
Papalambros
,
P. Y.
, 2006, “
A Bayesian Approach to Reliability Optimization With Incomplete Information
,”
ASME J. Mech. Des.
,
128
, pp.
909
918
.
13.
Du
,
X.
,
Sudjianto
,
A.
, and
Huang
,
B.
, 2005, “
Reliability Based Design With Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
,
127
, pp.
1068
1076
.
14.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
L.
, 2007, “
Integration of Possibility-Based Optimization and Robust Design for Epistemic Uncertainty
,”
ASME J. Mech. Des.
,
129
, pp.
876
882
.
15.
Agarwal
,
H.
,
Renaud
,
J. E.
,
Preston
,
E. L.
, and
Padmanabhan
,
D.
, 2004, “
Uncertainty Quantification Using Evidence Theory in Multidisciplinary Design Optimization
,”
Reliab. Eng. Syst. Saf.
,
85
, pp.
281
294
.
16.
Li
,
M.
, and
Azarm
,
S.
, 2008, “
Multiobjective Collaborative Robust Optimization With Interval Uncertainty and Interdisciplinary Uncertainty Propagation
,”
ASME J. Mech. Des.
,
130
, p.
081402
.
17.
Messac
,
A.
,
Ismail-Yahaya
,
A.
, and
Mattson
,
C. A.
, 2003, “
The Normalized Normal Constraint Method for Generating the Pareto Frontier
,”
Struct. Multidiscip. Optim.
,
25
(
2
), pp.
86
98
.
18.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
, 2002, “
A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
181
197
.
19.
Otto
,
K. N.
, and
Antonsson
,
E. K.
, 1993, “
Extensions to the Taguchi’s Method of Product Design
,”
ASME Journal of Mechanical Design
,
11
(
1
), pp.
5
13
.
20.
Tonon
,
F.
, and
Bernardini
,
A.
, 1999, “
Multiobjective Optimization of Uncertain Structures Through Fuzzy Set and Random Set Theory
,”
Comput. Aided Civ. Infrastruct. Eng.
,
14
, pp.
119
140
.
21.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
, 2004, “
An Integrated Framework for Optimization Under Uncertainty Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
,
126
, pp.
562
570
.
22.
Messac
,
A.
, and
Ismail-Yahaya
,
A.
, 2002, “
Multiobjective Robust Design Using Physical Programming
,”
Struct. Multidiscip. Optim.
,
23
(
5
), pp.
357
371
.
23.
Thoft-Christensen
,
P.
, 2005, “
System Reliability
,”
Engineering Design Reliability Handbook
,
CRC
,
Boca Raton, FL
.
24.
Ba-abbad
,
M. A.
,
Nikolaidis
,
E.
, and
Kapania
,
R. K.
, 2006, “
New Approach for System Reliability-Based Design Optimization
,”
AIAA J.
,
44
(
5
), pp.
1087
1096
.
25.
Zou
,
T.
, and
Mahadevan
,
S.
, 2006, “
Versatile Formulation for Multiobjective Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
128
, pp.
1217
1226
.
26.
McDonald
,
M.
, and
Mahadevan
,
S.
, 2008, “
Design Optimization With System-Level Reliability Constraints
,”
ASME J. Mech. Des.
,
130
(
2
), p.
021403
.
27.
Huang
,
H.
,
Qu
,
J.
, and
Zuo
,
M. J.
, 2006, “
A New Method of System Reliability Multi-Objective Optimization Using Genetic Algorithms
,”
Annual Reliability and Maintainability Symposium
, pp.
278
283
.
28.
Taboada
,
H. A.
,
Baheranwala
,
F.
,
Coit
,
D. W.
, and
Wattanapongsakorn
,
N.
, 2007, “
Practical Solutions for Multi-Objective Optimization: An Application to System Reliability Design Problems
,”
Reliab. Eng. Syst. Saf.
,
92
, pp.
314
322
.
29.
Limbourg
,
P.
, and
Kochs
,
H.-D.
, 2008, “
Multi-Objective Optimization of Generalized Reliability Design Problems Using Feature Models—A Concept for Early Design Stages
,”
Reliab. Eng. Syst. Saf.
,
93
, pp.
815
828
.
30.
Caballero
,
R.
,
Cerda
,
E.
,
Munoz
,
M.
,
Rey
,
L.
, and
Stancu-Minasian
,
I. M.
, 2001, “
Efficient Solution Concepts and Their Relations in Stochastic Multiobjective Programming
,”
J. Optim. Theory Appl.
,
110
(
1
), pp.
53
74
.
31.
Caballero
,
R.
,
Cerda
,
E.
,
Munoz
,
M.
, and
Rey
,
L.
, 2004, “
Stochastic Approach Versus Multiobjective Approach for Obtaining Efficient Solutions in Stochastic Multiobjective Programming Problems
,”
Eur. J. Oper. Res.
,
158
, pp.
633
648
.
32.
Caballero
,
R.
,
Cerda
,
E.
,
Munoz
,
M. M.
, and
Rey
,
L.
, 2000, “
Relations Among Several Efficiency Concepts in Stochastic Multiple Objective Programming
,”
Lecture Notes in Economics and Mathematical Systems
,
Spring
,
Germany
, Vol.
487
, pp.
57
68
.
33.
Urli
,
B.
, and
Nadeau
,
R.
, 2004, “
PROMISE/Scenarios: An Interactive Method for Multiobjective Stochastic Linear Programming Under Partial Uncertainty
,”
Eur. J. Oper. Res.
,
155
, pp.
361
372
.
34.
Muñoz
,
M. M.
, and
Ruiz
,
F.
, 2009, “
ISTMO: An Interval Reference Point-Based Method for Stochastic Multiobjective Programming Problems
,”
Eur. J. Oper. Res.
,
197
, pp.
25
35
.
35.
Messac
,
A.
, 2000, “
From Dubious Construction of Objective Functions to the Application of Physical Programming
,”
AIAA J.
,
38
(
1
), pp.
155
163
.
36.
Athan
,
T. W.
, and
Papalambros
,
P. Y.
, 1996, “
A Note on Weighted Criteria Methods for Compromise Solutions in Multi-Objective Optimization
,”
Eng. Optimiz.
,
27
, pp.
155
176
.
37.
Der Kiureghian
,
A.
, 2005, “
First- and Second-Order Reliability Methods
,”
Engineering Design Reliability Handbook
,
CRC
,
Boca Raton, FL
.
38.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
39.
Pandey
,
M. D.
, 1998, “
An Effective Approximation to Evaluate Multinormal Integrals
,”
Struct. Safety
,
20
, pp.
51
67
.
40.
Holmström
,
K.
,
Edvall
,
M. M.
, and
Göran
,
A. O.
, 2003, “
TOMLAB—For Large-Scale Robust Optimization
,”
Proceedings of the Nordic MATLAB Conference
, also see http://tomopt.com/http://tomopt.com/
41.
Pamadi
,
B. N.
,
Neirynck
,
T. A.
,
Hotchko
,
N. J.
,
Tartabini
,
P. V.
,
Scallion
,
W. I.
,
Murphy
,
K. J.
, and
Covell
,
P. F.
, 2005, “
Simulation and Analyses of Stage Separation of Two-Stage Reusable Launch Vehicles
,”
AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference
, Paper No. AIAA 2005-3247.
42.
Sinha
,
K.
,
Krishnan
,
R.
, and
Raghavendra
,
D.
, 2007, “
Multiobjective Robust Optimization for Crashworthiness During Side Impact
,”
Int. J. Veh. Des.
,
43
, pp.
116
135
.
43.
Youn
,
B. D.
,
Choi
,
K. K.
,
Yang
,
R. J.
, and
Gu
,
L.
, 2004, “
Reliability-Based Design Optimization for Crashworthiness of Vehicle Side Impact
,”
Struct. Multidiscip. Optim.
,
26
, pp.
272
283
.
44.
Zou
,
T.
, and
Mahadevan
,
S.
, 2006, “
A Direct Decoupling Approach for Efficient Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
31
, pp.
190
200
.
45.
Putko
,
M. M.
,
Taylor
,
A. C.
, III
,
Newman
,
P. A.
, and
Green
,
L. L.
, 2002, “
Approach for Input Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives
,”
ASME J. Fluids Eng.
,
124
, pp.
60
69
.
You do not currently have access to this content.